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\ tracking but introduces an accurate model of the satellite orbit.
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Abstract

A 6l-state truth model is developed for the aircraft to satellite
tracking problem. The equations for the Ixtended Kalman Iilter are
described and the truth model is examined and simplified to give a
12-state reduced order filter model of the system. Using the method
of Covariance Analysis which is described, the performance of the 12~
state filter model against the 61-state truth model is evaluated with
tiie dynamics profile of a high altitude ~ircraft tracking a near earth
satellite in a circular polar orbit. The measurement equations for the
truth model are adjusted over a range of measuring instrument precision
and the filter model reevaluated. The resultant tracking accuracies

are discussed.
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IiIGH ACCURACY ATRCRAFT TQ SATELLITE
TRACi{ING USING LXTLNDED KALMAN
; FILTER

I. IKRTRODUCTION

i g r A

Statement of the Problem

Given two accelerating vehicles, there are many situations in which

LT M

it is necessaryv to track one vehicle from the other with a high degree of

accuracy. In general, such a svstem cannct be modeled deterministicallv

and stochasti~c estimation techniques must be emploved.

i s tess o0 s N

This thesis wddresses the nroblem of tracking a satellite from an

aircraft. Again, this problem is varied and might include tracking of

navigation satellites from long range transport aircraft or tracking of
low orbit satellites from high altitude aircraft using laser devices. j
The latter will be investigated in particular. Ideallv, the satellite
would transmit a beacon signal to facilitate tracking but in practice

this cannot be guaranteed. For the purposes of this report, the satel-

s

lite is assumed to be completelv passive.
Various metiods are available for formulating and solving the

tracking problem. One such method which uses an ILxtended Kalman Filter

to provide the system state estimate is investigated in detail.

Objectives of the Study

The primary objective of the studv will be to determine the feasi-
bility of using a reduced order (simplified) svstem model to propagate
the system state. Propagation will be carried out using the Txtended

Kalman Filter. To investicate feasibility, the following breakdown of

1
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the problerm will be followed:
1. Develop the full truth model representing true svstem
performance.
2. Generate a tracking prcfil2 representing a typical
tracking 'pass'.
3. Using the truth model from 1. and the tracking profile
from 2. carry out a covariance analvsis with a reduced
order system model.
! 4. Adjust the reduced order model until satisfactory
: performance is obtained.
Thus, given a svstem truth model, a reduced order svstem model will
3 be found and tested using the covariance analvsis. A secondary objective
will be to modify the system truth model and correspondinglv modifv the
£ reduced order system model and repeat the tests of the reduced order

model. The modifications will involve changes to the measuring devices

o~ to represent increased or degraded quality. This will be done to deter-
mnine the quality of measuring instrument reauired in practice to achieve

] some specified level of tracking performance. :

sg b et

Assumptions and Limitations

The system investigated here is in fact non-linear so that the basic
walman Filter cannot be used to propagate state estimate and associated j

covariance. Various methods are avialable for handling non-linear oro-

blems among which is the Extended Kalman Filter. This formulation,in

common with most methods for handling non-linear problems,assumes that

?

Gl e o ol L aanlhy i

the non-linear system can adequately be represented by a linear svstem

about some trajectory. That is, deviations from this trajectory can be

R am o b

handled using linear methods. The assumptions inherent in the lineari- 3
2 !
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zation procecs will be desr:ived in detail under cection 1II which des-

cribes the Lxtended Kalman Filter.

This study attenpts to find a simplified reduced order system model

which will adequately describe the true system performance. TFor a true

3 linear system, the covariance analvsis is complete in that it accurately
4 c

describes the filter perfoirmance.

Loy by

However, in applying linear techniques

to non~linear systems, it is sometimes possible to obtain apparently
good performance when in realitv the performance is bad. This possibility

is usually overcome by carrying out a 'Monte-Carlo' system analysis in

R T, W ey DA

addition to the covariance analysis. This would be desireable for the
problem but will not be done in this study.
Only one aircraft/satellite dynamics profile is investigated in this

study. The profile chosen uses a low orbit satellite in a polar orbit

“ tracked by an aircraft flying east/west. This was chosen to represent as
near as possible one of the worst case situations in which the satellite
passes almost directly overhead. Clearly, confidence in the models would
improve if several representative profiles are tested. Also, the tracking
state equations are modeled in the line of sigh® coordinate system. The

equations could have been modeled entirely in inertial coordinates or

aircraft coordinates possibly with different results.
It is assumed that the tracking antenna is controlled by some closed 3

loop control system. Tie dynamics of such a system have not been incor-

porated into the models. In fact, the system assumes that deviations

from nominal can instantaneously be corrected at regular intervals.

BT

Finally, it will be astcumed that the coordinate transformation matrix |
from the tracking coordinate frame to the inertial non-rotating earth :

centered coordinate frame is known. This assumption implies that the

3
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tracker orienctation relative to the inertial cocrdinate frame is known.

For the purposes of this study, it will he further assumed that the tracker
elevation axis always lies in the inertial X-Y plane (See Fig. 1 Section
IT). Thus an inertial reference must be available on board the aircraft.
The problem could be considered bv introducing a body (aircraft) coordi-
nate system and assuming that the tracker orientation relative to the
body is known. It would then be necessary to assume also that the body
orientation relative to the inertial coordinate system is known. The

simplest assumption which implies no loss of generality is the first.

That is, the tracker-orientation relative to the inertial coordinate

frame 1is known.
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II. SYSTEM MODELING

Physical Descweiption of the System

Physically, the system consists of a satellite and an aircraft
equipped with some type of satellite tracking device, typically a high
resolution radar or laser. The tracking device is equipped with three
rate gyros which measure the tracker inertial angular velocity in thr:e
comporienits. Three accelerometers measure the three corponents of spe-
cific force of the tracker origin. Some control svstem is available to
correct the estimated tracker angular deviations. These estimates will
be found using the Extended Kalman Filter and the control system will
have the capability of instantaneocus corrections. The tracking device
is able to measure the satellite range, range rate and small angular
deviations of the tra~ker firom the true line of sight. The measurements
are all assumed to be imperfect. The nature of the corrupting noises
w11l be discussed later.

The tracker depends for its operation on the availability of a
reference coordinate system. This could be the aircraft to bodv system
assuming the orientation is known or the inertial earth centered coor-
dinate system. For this problem, it is assumed that the tracker base
always lies in a plane parallel to the inertial X-Y plane (see Fig. 1,
next page). In practice this would be accomplished with a closed loop con-
trol system using some inertial reference sensing device. Note that the
possibility that the tracker base 1s translating or accelerating is not
excluded.

Target State Equations

The target state zquations are expressed in the geocentric - equa-

torial non-rotating coordinate system illustrated i~ Fig. 1. The state
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Ad), Ady, Adj
As;, Ary, Asjy
Amy, Amp, Amj
Ap), App, Apj

wly w2’ W2 -

equations are:

X, = X,
. X2 = Xs
: }.{3 = Xg
g %Q = Ag, + Ad} + As; + Am; + Ap; + W, (2-1)
: X = Ag, + Ad, + As, + Aw, + Ap, + W,
] Xe = Agy + Ad, + Asy + Amy + Apy + W
; X,, X,, X3 ~ represent the target inertial position from earth center.
Xy, X5, Xg - represent the target inertial velocity

Agy, Agy, Ags - are the gravitational forces along the X;, X, Xidirections

~ are the forces due to aerodynamic drag.

are the solar perturbatisns (gravitational).
- are the lunar perturbations (gravitational).
- are the perturbations due to solar pressure.
are zero mean independent Gaussian white noises added to
model unknown perturbations and to account for approximas-

tions in the above terms.

Appendix A indicates the method of obtaining the earth's gravita-
tional attracting forces Ag), Agr, Ag3 and the method of finding the
second partials of the gravity gradient for the earth. These will be

required during the state equation linearization process.

Force Due to Drag

e G R e A o e GBI

Ad

&

The drag perturbational accelerations are modeled as follows:

is the drag vector in inertial non-rotating coordinates

is the inertial position vector | X
from earth center to target

= S e i
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r 1is the iInertial velocity vector Xy
of the target
X5
| %6 |
1 .
Then Ad = -5 p BV, 1, (2-2)
where:
o = atmospheric dencity modeled as: p = p,e =6 hn
Pg = mean sea level atmoshperic density
£ = altitude atmospheric density decay rate
h = (X2 + X,2 + )(32)'”E - R
"o = mean earth radius ]
Va = magnitude of the vehicle velocity relative to the ;
rotating atmosphere. V_ = éa i
WE = earth rotation rate, and by the law of Coriolis: ;
-Xu + VE qu %
=
r, =|Xs - VEX1|= Va (2-3) ‘
Xg
B =~ wvehicle ;allistic coe;ficient %

In general, the ballistic properties of the vehicle will be unknown. 3

However, the ballistic coefficient B will nct change with time and can

ey

therefore ve modeled stochastically as a random bias. Such a model

implies 100 correlation with time. B is therefore represented by the

system state X5 with the state equation :

X7 = 0 (2-4)
Thus appropriate choice of an initial condition for X, can be made to
adequately mocdel a range of vehiecle types.

8
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Sun and lfoon Q£§y};§£jfgggLl]{gﬁggth}ons

The sun and moon perturbing acceleration vectors are defined

respectively as:

s R e e N A T A e T S T N TS

rAsl Amj
g As = | Asy], Am = | Am,
: As3 Amjy
: S L

For the parposes of this report, the sun and moon are considered

¢ stationary in space relative to the vehicle and earth. This assumption

is valid since the time for a particular pass for a low orbit satellite

will be of the order of minutes only.

If the sun and moon have position vectors relative to the non-

rotating inertial coordinate system of:

o

Xs and Xm

Sarad sty son

Ys Ym| respectively
Zs Zm
3 then the perturbatlional acceleration vectors As and Am vill be given by:
B, —— —
Y
: — -
: Xs - X Xs
3 As =y —_— -
— © rvs” rs3
;i
;
: ¥s - X, ¥s
rvs3 T ors?
]
Zs - X3 Ei
Tyg ’ o xS 3
3
9
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PSRRI

o Ty e TR e e R T

and

Y X
: Amo= g (m - X)) _ (2-6)
é Tym3 m3

(Zm - X3) Zm

~
w
w

where

i i e

gt

B A 2 S e by

Z = Zm - X

XVS = Xs = x1

YVS = Ys - X

Zys = Zs - X

= ,} 2 2 2
vs Xvs + Yvs + Zvs

e mERARE e i S

= 2 2 2
Tym \[va + Yvm + Zvm

v g

g

rm = \/sz + Ym? + Zm2

rs = \/st + Ys? + 252

BTNy LTy S |

Solar Pressure

The force acting due to solar pressure is modeled in a

gt

simple way using the relationship:

10
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Ap, = -K s Xvs
Tys

Ap, = -K s JvS (2-7)
P rvs

Apa = -K s E‘E
Tys

K is a proportionality constant of 4.5 x 107 m/sec (Ref. 1) and
S is the solar pressure coefficient. This latter coefficient depends
directly on the vehicle surface area presented towards the sun and in-
versely on the mass of the vehicle. Again, no information is available
about the vehicle and S is agaln modeled as a random bias Xg. The sta‘e

equation for Xg is therefore:

XB = 0 (2-8)
and appropriate choice of the initial condition tor X will adequately

model the range of vehicles of primarv interest.

Tracker State Equations

Fig. 2 illustrates the geometry of the typical tracker. The table
is aligned with a reference plane which in this case will be the inertial
plane. The tracker is thus restricted to rotate about the azimuth ver-
tical axis and the elevation axis. The vertical axis of rotation will
always stay aligned with the inertial vertical axils while the elevation
axis will be restricted to lie in the inertial horizontal plane only.
Note that the tracker is configured such that the tracker xp axis points
along the antenna center line, while the tracker vy axis points out
through the tracker elevation axis and theretore always lies in the

plane of the table as shown. The tracker zy axis forms the third vec-

tor in an orthogonal system.

11
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Z
Fig. 2 Tracking Antenna Configuration

l1ig. 3 shows the relation between the inertial X, Y, Z frane,

which is an earth centered non-rotating frame, and the tracker XT, yT,
z
T frame.

Fig. 3 1Inertial and Tra:ker Coordinate Frames

From the above figure it can be seen that the tracker frame orientation
1s obtained via two Euler angle rotations © and f in the azimuth and

elevation directions respectively from the inertial frame. Denoting

12
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the inertial frame as the I-frame ard the tracking frame as the T-frame

ve define the coordinate transformation matrix C1 as the transformation

matrix from I-coordinates into T-coordinates, then:

- r -

cos ¢ 0 -sin ¢ cos B sin 8 0

cg - 0 1 0 -sin 8 cos 8 0
sin ¢ 0 cos ¢ 0 0 1
= (;os € cos ¢ =sgin 6 cos ¢ -~sin ¢
~sin 6 cos 6 0 (2-9)
cos 0 sin ¢ sin 6 sin ¢ cos ¢

Now, the Euler rotation angles 6 and ¢ can he determined by con-

sidering the geometrv of the tracking problem. Let the relative position

vector of the target from the aircraft be expressed in inertial X, Y, Z
coordinates as‘EIi

Defining B; as the relative pcsition vector expressed

in inertial I-coordinates and BT as the relative posi-

tion vector expressed in tracker T-coordinates then:

N
X
RE =R |, and &' = T g! (2-10)
RZ-J
PT = [R, cos 8 + R sin 8 cos ¢ - R, sin ¢ |
R = Y cos ¢ v sin z

- ]
RX sin 6 + RY cos @

l_R.X cos 6 sin ¢ + RY sin 8 sin ¢ + Rz cos 9

(S
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Bt ielirt

’ If we define the range from alrcraft to target as the scalar variable R,
then R = the X-component of the vector BT and the Y and Z components

: are both zero for perfect tracking.

Thus

. R = Ry cos 8 cos ¢ + RY sin 6 cos ¢ + RZ sin ¢

And

-Ry sin 6 + RY cos 6 = 0

tan © = —

is determined as follows:

® = arc tan (RY/RX) if Ry > 0, Ry arbitrary
(2-12)
= arc tan (R,/R,) + ®m 1if Ry < 0, Ry arbitrary
: X Y
Similarly,
Ry cos 6 sin ¢ + RY sin & sin¢ + Ry cos ¢ = O :
Ry
X+ Ry + Rz = 0
tan § tan ¢ sin 6 ﬁ
but ;
Ry '
sin 6 = 1 ;
(Ry?2 + Ry2)* .
X + = = 0 |
Ry Ry « tan ¢ :
i
;
_Rz R
tan ¢ = T oL (2-13)

(Rxf + RYZ) 2

14
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Thus far, the relationship between the tracker and inertial

coordinate frames has been established and it has been shown that

the cocrdinate tranformation mat-{ix is dependent entirely on the

relative pos.tion vector from aircraft to target expressed in inertial

coordinates.

In practice, perfect tracking, in which the XT vector aligns per-

fectly with the target line of sight, will not be possible, The tracker

frame will in fact be slightly misazligned from the true line of sight

coordinate system denoted Ls* This system has the X1 g axis pointing

directly towards the target and is related to the target coordinate

system as shown by Fig. 4.

L5k &/

Fig. 4 Target and Line of Sight Coordinate Frames
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e Or~e again, the two frames can be coincided through two small Euler

rotations ¢e and 6n. &n rotates the LS - frame about the tracker
Zn axis and d&¢ rotates the LS - frame about the line of sight Yis axis.

LS
The coordinate transformation matrix CT transforms a vector from T -

coordinates into LS - coordinates and:

B ey S S e e R Al e bl A S g L
- N - (i

] LS B
: CT = cos én cos 6¢ sin &n cos §¢ ~-sin §e
i -sin &n cos &n 0
i
‘ cos 8n sin §e sin 8n sin ¢ cos &¢
i For near-perfect tracking in which the angles 8¢ and én are small,
i it is possible to make the small angle assumptions:
3
: cos 6n = cos 8 = 1
é { : sin 6n = §&n, sin e = §¢
§eén = 0
i~
3
3 then:
J LS
3 Ct = 1l &n ~8e
8¢ 0 1
h: In practice, the tracking device will be canable of providing :
- measurement information concerning the two small angles &8¢ and 6n; ]
k:
1 hence it is necessary to establish the state equations expressing the f
?; time rate of change of the two angles., 3

The motion between the T-rotating frame and the LS-rotating frame

|
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S
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is characterized by the following differential cquation: (Pef. 7)

T

, _ 1 T -
LS “LS W, C (2-15)

]

T
Cle = C ;
T °LS

‘LS

where H‘S and ”T are the skev symmetric matrices defined as

W =~ 0 -w wra | [0 . 0 —Wer W |
LS LS: LSY 2 T L7 TY
w 0 ~Wr e W 0 -
LS, LSy T, Ty
|
CYLSy, ”LSX ¢ i tmTy “Ty 0 J

and the elements of these matrices represent the angular velocities
about the particular axes subscripted.

Now, the tuo vectors:

LS T
. = [w 7 =TI T
ij uLSX and wT wTX

W S

are inertial angular velocity vectors expressed in line of sight LS -

coordinates and tracker T - coordinates respectivelv,

From (2-15),

LS T _ ., _ LS., .T
CT” Cg = Vg cp> el
or
. . LS. T
I+ MG = R - P O
17
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Rl

E vhere:
E ( 0 &n =8¢
3
E A = |-én 0 0 (2"17)
:
;
3 be 0 0
| Neglecting second order quantities gives:
1 —u - . _ LS B T _
A=W CF” My Cfg (2-18)
: The above equation can be written out as:
3
j 0 ~d&n &e 0 —wLSZ wLSY
:i .
3 §n 0 0 - 0 - -
“Ls, 18
4 e 00 ~w w 0
3 C . | "ULSy LSy _
R 0 -wr. wp | [1  -en &
Iy Tz TY
) 1 0 0o - $ 1 0
n wTZ UJTX n j
| |
5 2 -& 0 1
| Se 0 1 | LmTY wTX 0 ] | -¢€ _
= W - T 0 (e - 8¢ wry) ( - &n wr,) ] .
L3 YT, Tx “Ty X ;
—uy, = 8 + 8¢ & ]
(wTZ + 8¢ wTX) 0 ( wr, = &0 wpy 3 uTZ) )
. - )
_(_wTY + 6 mTX) (uTX + 6n wTY Se wTZ. 0 ]

T E—
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; which provides the two required state ecuations for 8e and én as:

én = wLSz = wTZ - &r¢ wTX
fe = “’LSY - u\TY + &n mTX

In order to determine the time evolution of the line of sight
angular velocity vector Ygs consider the position vector of the target
reiative to the aircraft which was defined as R (iiote that the magnitude
of R i1s the scalar range variable R also previously defined).

Differentiating R twice with respect to inertial space and applving

the theorem of Coriolis each time gives the equation:

2 2 .
e T Y
I - 2 dt
dt 1 e LS LS de LS
+ g X (g X OB (2-20)

where the vertical line denotes the frame relative to which the deriva-

e KR

tives are taken, so that the left hand side of equation (20) i.e.

d?R dR .
—= represents the total rate of change of = which is also
de? I dt 1

the total rate of change of the relative position vector R.

3
5
]
Equation (2-20) is entirely general and not referenced to any ﬁ
particular coordinate system. Choosing the line of sight coordinate %
2 , i
system and expression f;E in the line of sipht system as[A .y 7] i
dt? X }
I
A »"
telY H
!
A ;
: - “rel, - {
4:- Z i
19
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- then:

Arelx Vr 0 r 0 T
Arely =10 + 2| R wLSV + R uLSZ
_Arelz Lo J R sy 4L Rersy
E
, _ 2 X AN
| [ Rlupg ® + wps,”)
v
; + R mLSX wLSY (2-21)
- L R wLSX wLSZ 1
, and the above vector state equation yields the following four scalar
% ; state equations:
i_« (
i R = Vr (2-22)
i\ .
Vo= A+ Rlus,? 4 wpg?) (2-23)
i oo = -1 -2V -
; wLSY R Arely L P wLSX stz (2-24)
: . 1 2V
= = A - r - . 2-25
“Ls; T R rely = ‘Lsz ~ “Lsy ‘LS, =5 1
. where: §
: !
: R = Range g
Vy = Range rate i
Arel = Acceleration of target relative to tracker measured ¢
X 4
along the line of sight X - axis g
E
. 3
£ 3
4 |

20
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J - ArelY = Relative acceleration measured along line of

: sight Y - axis

krelz = Relative acceleration measured along line of
sight Z - axis

thus, 1if !/ A target acceleration along line of sight
ARy &

X - axis
A
and ATRX = trachker acceleration along line of sight X - axis
3 thea: A = A - etc. 3
rely TARy TRy
k Equations (2-22) to (2-25) thus represent the exact relationships

for the aircraft/sateilite tracking problem. It should be noted that

there is no state equation relating the motion of the tracker about

r , the X - axls in the line cf sight coordinate svstem, i.e. Wrg + The
_ ! X
; ' reason is simple, for the purposes of tracking, angular velocity about

the line of sight has nc significance. This does not however preclude
the requirement to mes.ur: the tracker angular velocitv in that direction

but since there is no state equation for w it must be eliminated

LSy’
from equations (2-24) and (2-25).

In practice, angular velocities will be measured in the tracking
coordinate frame since there is no physical way in which they could

be measured in the line of sight frame. The substitution from equation

(2-18) is made, i.e.

o T rte et s DT i s S o Lswlt e SAALAS (£330

- fegw (2-26)

TR 3 e
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and equations (2-24) and (2-25) now become:

= -1 - 2V
wLSY R ArelZ S “LSY + W3, (LTX + 6&n mTY - 8¢ uTy) (2-27)
; 1 2 Vp
“Ls, T R Arely T TRots, T uLsy lury *énep - deowp) (2-28)

The definitions for Arelxv Arely’ and Arelz again are made in the
line of sight coordinate system. Acceleration measurements for the
tracker are orly available in the tracker coordinate svstem in which

the tracker acceleration vector is defined as:

and accelerations of the target (satellite) are only availab’e in the

irertial coordinate system as:

[ X T
A
I L]
A =
_S Xs
L X
)
AS can be transformed from the inertial coordinate frame into the tracker :
It

coordinate frame by the transformation

AST = C, T a(l (2-29) 3

22
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: Thus, the vector of relative accelerations in the tracker coordinate

t

3

frame defined as:

4 rArV-
Ap = | AL | - 2-30
i B -
[ AL
L/
| nust be used to obtain the vector Arel’ i.e.
:
3 LS
; Are1 = Cp A (2-31)
3 where Cgs = 1 Sn  -é¢
~8n 1 0
(
3 e 0 1
X -
! or - A -1 dn =8¢ A ]
relX %
ArelY = [=6n 1 0 Ary (2-32)
il Arelz A | ¢ 0 1 'Arz'

Substitution from equations (2-31) and 2-32) into (2-27) and {2-28)

gives the final form of the two line of sight angular velocity equations

as:

23
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DR AT 6 Snal L R e 2
A

‘ g AL+

w Wy = w w
: LSY R LDY R rz LSZ TX
;
i
k
{ S ITE ) o § 5 (2-33)

w n w - dc uw -

F R “ry LS T T

. -2V 1

) = r — - \

“Ls, = Ys;, T R Ay “Lsy Y1y
{ + =6n A - uwg [dn wr, = &c wp ] (2-34)
3 R rX Y Y Z
: Hote thar in equations (2-33) and (2-34), the two brackated terms

represent modifications to the state equations for perfect tracking.

These modifications account for the small angular deviations &e and dn

from the verfect tracking situation.

Finaily, equation (2-32) {is substituted into equation (2-23) to give:

= 2 (. 2 2 -

which is the final state equation for V..

‘leasurement Lquations (Ref. 2, 3, and 5)

Measurements to the tracking system as alreadv stated will consist
of inertial angular velocity of the tracker measured in the tracker
coordinate frame by three rate gyros. measurements of tracker inertial
acceleration again in the tracker coordinate f -ame, measurements of range
and range rate and measurements of the two small angular deviations &e¢

and én. None of the measurements are assumed perfect. Now the system

propagates the true line of sight angular velocities VLSy and LSy

whereas measurements are available onlv of the tracker angular velocities

24
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L. s mTY’ Wy, - Yfeasarements of wa thus constitute true measurements
of parameter g while measurements of wry and wTZ are interpreted

as pseudo~measurenents of ULSy and wLs, respectively. If the tracking
is good, these measurements approach trne measurements. Measurements
of angular velocities in the line of sipht system would be most
iesireable but in a praciical s—stem such measurements would not be
available. It should also be noted that the tracker accrlerations are

not states of the system. Thus measurements of tracker accelerations

are measurements of system parameters,

sleasurement of Tracker Angular Velocities

These are provided bv three rate gvros mounted approximately in the
tracking coordinate frame. The approximation arises because in practice,
the gvros will always be slightlv misaligned from the true frame align-
ment. To simplify the discussion, only the measurement of wry will be
described. leasurements of the other two anpular velocity components
are modeled identically in form. The measurement of angular velocity

in the XT direction is thus modeled as:

3
=W + Bgsf, w + I Bgm A, + C
Ty Tx B Py Yoo PR T 8X
+|8Cpa wp + v (2-36)

>
W

ek S SN TS
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The terms in equation (2-36) are as follows:

wy, = measured angular velocity along Xp - axis (see Fig. 2)

wa = true anpular velocity along Xp axis
Bgsfx = constant (bias) gyro scale factor
Bngi = coefficients (along X, Y, and Z directions of tracker

coordinate frame) of the g - sensitive mass unbalance

to which ti. gyro is subject

Ay = Accelerations (ATX, ATY, ATZ) of the tracker origin

ng = gyro drift term along the Xp axis.

|
%
3

ACgma = the error angle transformation resulting from the

misalignments of the three gyros

0 Bgma12 Bgma13
ACgma A Bgmas 0 Bgma, , 3
| Boma,, bgma,, 0 d

Note that for the purposes of this study, the terms in the above

matrix are considered constant and result from the small ancle approx-

imation.

V1 is an additive white noise used to compensate for any unmodeled
effects such as aniso-elastic drift.

The above terms can be modeled stochastically as follows: The gyro
drift term ng can be modeled as a first order exponentially time co-

related random variable. Drift is not a white random noise process

26
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but does show a degree of correlation in time. lLaboratory data inai-

~ cates that the exponential model adequately describes this correlation.
The state equation for ng will thur be:
L ng = "Bl. Cg\: + \’2 Bl& Oy Uy (2-37)

where if 1, represents the system correlation time,

!
. B = =
g, is the rms value of the process, and U, is a unity variance white

i driving noise.
13

1
8

Fig. 5 below shows the equivalent linear system:

A—

_C
4—1\/2B, 0y P———e———— fﬂl ——"0

o S ey
RPN W

Bty CF Y

Fig. 5 Linear System Representation for ng i

£,
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U, in Fig. 5 1s o "tistte driving noise of variance gq

il
—

The autocorrelation function for ng is given by:

Eoicg (®) Cplt + 1 = 02 o Buld

4

Note that by appropriate choice of initial condition for C

gy’ an

initial known bias in drift can be accounted for.

TR B AR R L WY TR ST A

The remaining ccefficientsrepresent unknowns in thz system. One

3 fact is certain however; none of these coefficients will vary with time.
For example, the gyro misalignment coefficients have values which des-

i cribe how the gyros are displaced during assembly from their true

orientations. While these displacements may not be known, it is certain

that in the time scale of a typical satellite pass, they will not change.

p The model chosen to represent the coefficients therefore will have the

@2
P

general form:

| This is a linear equation and the covariance equation which corre-

sponingly describes the way in which the covariance of a coefficient

will change in time is given by the general form:

P = #P + P FL (where FL denotes the trans-
pose of F, and F is the
system matrix)

Thus, P = O, :

and this implies that the variance of a coefficient likewise will not

Se 5 e AdtonC L

change with time. Choice of initial conditions on X and P completely
& {; describe a coefficient. The initial condition on X represents the mean

value of the coefficient and the initial condition on P represents the

28
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variance of the distribution of ¥ about its mean. Often, howvever, the

only information available about the coefficient will be the variance,

in which case, the nost reasonable choice for an initial conditjion on

R e Y e T A

X is zero.

A ) :1
rleasurements of TrnckeriAccelqrations

The tracker accelerations are parameters of the svstem rather than

states. The measurements are modeled as follous. note that only the

measureucnt equation for the acceleration in the Xr direction is given.

. I3 ’ » 1] - i
The remaining equations are identical in form.

= + Las, A + C + 3Bnon Ar 2+ Bnon 3
ATXM bry X Ty ax X1 TTx X, “1y

| + AC 4 Ap 2 + Vl+ (2-38) ;

The terms in equation (2-38) are defined as follows: ]

ATX = measured acceleration along XT direction in tracker
M

coordinate frame

true acceleration

g

BasX = accelerometer scale factor

J:
F
;
[
2
i
1
3

.

C = accelerometer drift and bias

2 o

BnonXl = accelerometer (g2) non-linear coefficient

BnonXZ = accelerometer (ga) non-linear coefficient

y
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A -
ACma = [ O Bamaj, Bama, 4
Bama2 1 0 Bama2 3
Ik Bama31 Bamagy, 0 a is the error angle

transformation matrix which supplies the accelerometer misalignment

coefficients,

Note that the small angle approximation has been made in using

this matrix.

v, = white noise to account for unmodeled effec:=z.

Once again, as in the case of the rate gyros, the coefficients in
the measurement equations are modeled as states of the system. The
accelerometer drift and bias is modeled as a first order exponentially
correlated random variable. This choice of model is justified since
the magnitude of the drift will in fact varv with time. The degree of
correlation in time is expressed by the constant Bi used in the state
equation. Note that equation (2-37) describing the gyro drift shows
the form of these equations. In addition, the remaining coefficients

are once again modeled as random biases.

Measurement of Angular Misalignments Se and 6n

The tracking device will be capable of providing measurements in the
tracking coordinate frame of the two angular misalignment angles &e and
dn. See Fig. 4 for a description of the geometry. &n is measured about
the Zp - axis and 6e is measured about the y;¢ - axis. In practice,

the LS - coordinate frame and the T - coordinate frame will be closely

30
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aligned and §c will in fact be assumed to be measured about the yr =

axis.

TN I T

Now there are clearly manv differcnt measuring devices. If a

radar scanner were used, the measurement device might be different to

el

that used with a laser tracker. lowever, a scmewhat representative

T T

model is chosen vhich could easily be adjusted to suit the particular

] device. The measurement model for the two error angles has the following
% form:
: E
GCM = KI(GL + Se) + CSFE + de + BATE + V5
(2-39)
6n,, = Ka(én +8n) + Cgp - én + Byy + Vg A
n n i
, where the various coefficient are as follows: E
: »;
Ky, K - deterministic scale factois i
Ses Cn - angle track scintillation noises ;
CSFC’ CSFn ~ scale factor errors '
BATE’ BATn - angle track biases
|
Vs, Vg - white gaussian additive noises to account for

unmodeled effects

K and K, are assumed to be known. S_ and S,, are modeled as first order

exponentially time correlated random variables. This model is used

since the scintillation noise is dependent on various factors such as

™

atmospheric propagation, amplifier characteristics, etc. This type of

31
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factor does not change instantaneously with time but fluctuates. Again

the state equation used will have the form:

S, = -1 S, + 281 o Uy (2-40)

1 2
where B = T and 1; is the correlation time of the process. oy is

the steady state covariance of the noise and U] is a white driving
noise with unity covariance.

The scale factor errors C. and CSF are modecled also as first
< n

Fe
order exponentially correlated random variables with state equations of
the form showm in (2-40) above. This is andfher way of stating that
the constants K; and K, are not really constants but random variables
which are expcaentially time correlated and have a non-zero mean.
Again, the justification for using this model is that the scale factors
are really determined within some type of electronic equipment which
exhibits time correlated behaviour.

The remaining coefficients BATe and BATn can be adequately modeled

as random biases. i.e. The actual values are unknown, the covariance

is known and the variable has 1007 time correlation.

Yleasurement of Range

The measurement of range is very similar to those of the angular
misalignment angles except that the scale factor error is omitted.

The measurement equation is thus:

Ry = KR + 5.) + B + Vg (2-41)

32
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where:

RM - measured range

R - true range

SR - range scintillation noise

BR - range bias

V9 - white gaussian additive noise to account for unmodeled
effects

The actual electronic methods by which range is measured vary from
those by which the angular misalignments are measured. In peneral, the
latter depend to some extent on analoy equipment (linear amplifiers,
etc.) while the range measurement can usually be accomplished digitally
with very little analog equipment. The digital equipment can usually
be accurately calibrated so that only the scintillation noise and bias
need be stochastically estimated. The bias will be small in magnitude
compared to the scintillation noise and will result from the equipment.
The scintillation noise will however be the additive effect of the
digitization of the range and the atmospheric fluctuations. These can
be combined and modeled as the familiar first order exponentially time
correlated random variable. The bias 1s considered to be fixed but

unknowvn and can therefore be modeled as a random bias.

l{easurement of Range Rate

The experiments performed with this model have shown that the
measurement of range rate is usually redundant since range measurements

made at a high frequency will yield the same information. The possibility
33
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of a range rate measurement is therefore not investigated.

Sunmary of Svstem Truth l!lodel State and Measurement ELquatlons

The above state and measurement equations for the system truth model

are summarized as follows:

aidetied

State Equations

| (L) X3 = Xy
(2) kz = X5 Satellite Inertial Position
(3) X3 = Xg

(4) Xy = Agy + Ad} + As; + Amp + Apy + W

! , Satellite

(3) X5 = Ag, + Ady + Asp; + fmp + Apy + Wy Inertial
i Velocity

(6) Xg = Agz + Ad3 + Asz3 + Am3z + Apy + W3

¥ (7 x;, = 0 Satellite Ballistic Coefficient

i

1 (8) Xg = © Satellite Sol-r Pressure Coefficient

g 9 w = - = A = r w + w w

: LSy R 1z R LSy Ls, Tx

P Tracker -
+ Ot Ary 4w [Gn wp - fe W ] Angular E
- LSy Y 47 Velocity ]

LV g ot

34
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(11)

(12}

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

1 2v
W, o = A - r
LS, R Ty == “Ls, “Lsy “Ix
Tracker
-&n B ‘ Angular

+ - w n w - e uw Velocit

2 LSy [ Ty rz] f city
Gn = wLSZ - wTZ - §e wa
. Tracker Misalignments
g = W = O + 6nw

LSy Ty Ty
ﬁ = Vr Range
Vo= Ap o+ R (W c2 4 0 2) 4 SnA. - Gef P Rat
. ry Crsy LS, ) Wy Ay, TRange Rate
S¢ = —815E + \/2 By o1 N1
. Angle Track Scintillations
SR = =B3Sp + V 2 B3 03 Uy Range Scintillation
ng = —Bqux + 2 By oy Uy )
égY -B5Cy, + V285 o5 Us  Gyro Drift
ng = -BngZ + 2 Bg og U5J
CaX = —67Cax + V 2 67 o7 U7\ Accelerometer Drift
CaY = -BSCaY + V 2 68 Og UB }
. Angle Measurement
Csp. = -B11Cgp  + 2 B1y o33 Uy Scale Factors
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: (26) B = 0
f &1
; Coefficients of Gvro Mass Unbalance
2 = - (nine equations)
k’ 0]
34) B = 0
(34) Bgn,
i (35) B, = 0 ‘
:\ ASx
(36) BASY = 0 } Accelerometer Scale Factors
3 GB7) Bpg, = O )
* - ‘
f (38) Bgmalz 0
; (39) Dgpa,y = O r \
(40) BgmaZI = 0 )
\
3 , . \ ( Gvro Misalignment Coefficients
i . (1) Bgpa,y = O
:
E P 0 o/
A (42) B&ma31
e~ 5
. i
(43) Bgma32 = 0 )
- - \
(44) Bama12 = 0
(45) Bamal3 = 0 ? \
B Accelerometer !fisalignment Coefficients
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B et L Y e o
O
.

' (50) nonxl = 0
3 (51) Bnonxz = 0 \
: (52) BnonY = 0
- 1
é . } Accelerometer (g2 and #3) non-linear
; (53) BnonYz = 0 coefficients
3 (54) Bnonzl = 0 J
r (55) Bnonz’ = 0
. (56) BR = 0 Range Bias
g
% 5 : 0
? (57) AT-(: =
; 0 Angle Track Bias
] (58) BAT = 0
3 n
¢
3 - 7 = \
1 (59) BgSfX 0
G
(60) Bgsfy = 0 r Gvro Scale Factors
; (61) Byge, = O J
The truth model therefore has a total of 61 state equations. Of
these, the first 14 represent the true system dvnamics while the
3 remaining 47 equations are introduced to model the measurements to the
; System.
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fleasurement Fquations
3
4 1 =G + B .
% R gsfy “Tx * Lo Py At Gy
%;
+ ACgma wr + v, measurement of wry
X
3
: i=1 i Y
:
+ ACpma wr + v, measurement of wp
Y
3
C) wy, = wrp + Bggr, wp, + i Bgmzi Ay + cgZ
+ {Acgma Wy + Vg measurement of wTZ
where
0 gma , 8Ma g
AC 2
gna Bgmau 0 Bgmazs
B B 0
©  gmaz; gmay -
and . 3 Ay
! X
b q
A2 = AT acceleration of tracker origin
Y in tracker coordinates
—~
X Ay *
z A
38
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(4) Ape, ™ ATX * By, A

M

Z
A
where ACma = 0 Bama12
B
anay
| s B
amag) amasjp

) 6EM = K1(6E + SE) +

I}

Kn + 8) + ¢

‘‘‘‘‘‘‘

c + B 2 4+ B 3
ay nonXl ATX nonx2 ATx

Measurement of AT
X

C + B A.2 + B

53
aY nonYl TY nonY K TY

Measurement of AT
Y

7 2 3
Caz u Bnonzl ATZ + BnonZz ATz

Measurement of AT
YA

B -
anay 3
B
ama,, ,
0 .
¢ + B + Vv
ATe 7
Measurement of &e
Sn + BAT + Ve

n

Measurement of §&n

g b
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:
' (T (9) Ry = Kr(R 4+ Sp) + Bp + V9 Measurement of R
|
Appendix D lists a typical data set for use with the above measure-
ment equations.

Use of Measurements

The above measurement equations are the total measurements available
to the system. However, onlv equations (2), (3), (7), (8), and (9)
correspond to measurements of the states of the system. The remaining
equations are measurements of cystem parameters. Thus tne true system
measurement vector has only the above 5 elements. There are two wavs
in which the other measurements can be incorporated into the svstem.
One method would be to consider the true svstem measurcment vector to

contain all 9 elements and the other method would be to rewrite the

( state equations and substitute the measured value of a parameter for
the true value. The latter method limits the number of measurement
equations to 5 which is desireable. In addition, since the true para-
meter values will not be known and the best information about these
parameters is contained in the measurements, the latter method would be
implemented in practice. For this problem therefore, the measured pnara-
meter values replace the true values in the state equations and the

number of measurement equations will actuallv be 5.

Linearization of State and !easurement kKquations

Appendix B shows how the state and measurenent equations for the
truth modei are linearized for application to a covariance analvsis

of an Extended Kalman Filter.
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i e ITII. EXTENDED FALMAN FILTER

s

Basic Kalman Filter (Ref. 12)

To understand the ICxtended Xalman Filter formulation used in the
study, it is first necessary to examine the equations for the Tasic

Kalman Filter. For this study, the state equations of motion are

s sacn

continuous in time. Computationallv, the eguations are discretized but

Setar bt

choice of an integration interval short corpared to the system time
behaviour ensures that the svstem is effectively continuous. Measure-

ments are incorporated at discrete points in time. Thus the continuous

gt uak e b bt

form of the Kalman Filter with discrete measurement updates is appropriate.

The following definitions will be required:

T T T

- (n vector)

x(ti) = system state at time ti

N i(t) = filter estimate of the system state at time

t - (n vector)

x(ti—) = filcer estimate of the svstem state at time tj

before a measurement is incorporated - (n vector)

x(ti+) = filter estimate of svstem state at time ty after

a measurenent is incorporated - (a vector)

¢(ti,ti _ l) = svstem state transition matrix from time ti .

to time ty - (n ¥ n natrix)

e T

P(ti) = covariance matrix of the filter state estimate

CYRA YO

x(t,) - note that the '-' and '+' convention is

( used here also - (n x n rvatrix)

41
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T T

e K(t;) = Kalman gain matrix at time ty - (n matrix)

1 F(t) = svstems dynamics matrix defined at all t -

(n x n matrix)

G(t) = system noise input matrix defined at all time t -

(n x s matrix)

H(ti) = neasurenent matrix defined only at time £y -

(m X n matrix)

w(t) = Goussian white noise vector with statistics
E {w(t)) = 0
(s vector)
E {u(®) wT(s)} = Q) &(t - s)
Q(t) = positive semi-definite symmetric noise covariance
matrix - (s x s matrix) E
v(tj) = Gaussian vhite noise vector sequence with statistics ;
(m - vector) ;
= b
Eo{utep} =0 ]
T ]
E {X(ti) v (tj)} = () t; = ts :
R(ti) = positive definite svimetric noise covariance matrix -
(m x m matrix) }
;
z(ti) = mpeasurencnt vector at time ty - (m vector)

Systen Description
The system is described by the folloving state ecuation:

42
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x(t) = F(Ox(t) + (1) wlt) (3-1)

and measurement equation:

H(ep)x(ty) + v(ty) (3-2)

E_(ti)

Filter Equaticons

The filter state estimate «(t) is propagated from time t. _ 5 O
time t4” by the equation:
x(eyT) = Ay, ty o p) Ry o (3-3)
and the covariance propagation is given by:
P(t,”) = o(ty, t ) Pty - 1D oT(ty, t ) +
i i» Y1 -1 i-1 {r "1 -1
ty (3-4)

[ #(ty, 1) G(r) (1) GT(r) o' (ty, T dt
ti-1
The Kalman gain matrix at time ti is given bv:

K(ty) = P(g7) nT(ey) [ H(ti)P(ti—)HT(ti) + R(ty) ] -1 (3-5)

and at time ty, the state estimate is updated by the equation:

j:i_(tf) = _f_c_v(ti’) + K(tj) [E(ti) - N(ty) _>:c_(ti-)] (3-6)

where c(ti) is the vector of mcasured values vhiel z(ti) assures at

time tj. The covariance matrix is updated at time ty bv the equation:

P(ty+H) = P(ty7) - R(ey) P(ey) PCE,-) (2-7)
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3 . Equations (3-3) and (3-4) are thus the propagation equations for

the state estimate and covariance respectively and equations (3-6) and
(3-7) are the update equations for state estimate and covariance res-

pectively. Initilal conditions for the propagation are:

(e,

E [i(to) ’

P(t,)

e fxey) - Eeeo)] [z -£<to>]T} (3-9)

Extended Kalman Filggf Formulation (Ref. 13)

The Extended NKalman Filter is cne method of propagating the 'optinal'
estimate of tlhie state of a non linear system. In the above linear form-
ulation, the filter estimate was indeed optimal since the equations of
motion and measurement equations were totally linear and the basic Xalman
Filter provides the optimal or best possible estimate for a linear svstem
driven by white Gaussian noise. The FExtended Kalman Filter uses a first
order linearization process and hence, the estimate will only be optimal
providing deviations from a nominal trajectorv remain arbitrarily smail,

Consider the non-linear state and measurement ejuations:

1}

20 = glxm, ] + cmr®

(3-9)

el = .‘1[35“1)’ ti] + v(ty)

where once again, w(t) and V(ti) are as described for thc linear fornmu-

lation with noise covariance matrices 0(t) and R(tj) respectively, but

in this case, the system dynamics is non-linear and expressed bv the
non linear function f( 4 ) and the measurcvment is a non linear functien

of the state x(t) and described by the non linear function Eﬂ , ). \lote

however that the driving noise z(t) is still additive in a linear fashion
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respect to the state X and which is evaluated along the nominal reference

trajectory, i.e.

! [t; l‘nO] = e —f'[:s(t)’ t] (3-15)
_J_(_

x(t) = x,(t)
Equation (3-14) represents the first order approximation to equation
(3-13) and propagates from the initial condition gx(t,) which is modeled
as a Gaussian random variable with mean (ﬁo - xno) and covariance P .
The notation F [t; xn;] implies that F is & function of time and that
F is evaluated along the nominal trajectory, which is a function of x,,.
Similarly, the measurement equaticn can be approximated to first

order by the equation
Sz(ty) = H [ti; l‘n(ti)] sx(tg) + wv(ty) (3-16)

where:

9 X

- x(ty) = x,(ty)  (3-17)
and the notation H {ti, En(ti)} is used to imply that H is a function
of the sequence of glmes ti{ and is evaluated along the sequence §n(ti).

Equations (3-14) and (3-16) thus represent the linearized varia-

tional equations for the system and therefore the theory of linear fil-
tering could be applied. In fact if the variaticens 3x(t) and 3z(ty)
renmain sufficiently small, which in turn implies that the true and nominal
state trajectories deviate by 'sufficiently' small quantities, then the
results of the application of linear filtering theorv should bhe optimal. The
word 'sufficient’' is of course relative and even snall deviations could re-

sult in large magnitude errors.

The object of the Extended Kalman Filter is to obtain the state
45
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-~ through the matrix G(t) and the measurement noise is also additive,
The Lxtonded Kalman Filter formulation assumes that the nolses are
white, Gaussian and additive in the same way as the basic Kalman Filter,
b aithough the sysiem dynamics and measurements may be non linear.

Assume some nominal reference trajectory is available, denoted

o e ey

as fﬂ(t)’ which is propagated from the initial condition xp(tg) = xq,

<y ~prr——

by the equation:
3o = £, ] (3-10)

; and assume also that associated with this nominal reference trajectorv

is the sequence of nominal measurements:
fn(ti) = E.[fn(ti)’ ti] (3-11)

( and consider the perturbation of the state from the assumed nominal

reference trajectory such that:

i Gl

>

L 6x (t) x(£) - x, (£) (3-12)

b

#3n

The error is a stochastic process which satisfies the stochastic

differential equation:

E s aal A S

5__x(t) = _f[;-;(t), c] - _g[._xn(r), t] + G(t) w(t) (3-13)

The first order approximation to this equation usually referred to as

the variational equation is:

B0 = 7 [6n, | m® ¢ 6@ wo (3-14)

( wvhere T [t; ino] is cthe matrix of nartial derivatives of f( , ) with

D ST, o\ g el bl
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estimate éﬁti+) and then relinearize about this estimate. Thus as soon
as a new state estimate 1s made, a better reference trajectery is in-
corporated into the system. In this manner, the assumption that the
deviations from the reference are small remains valid providing the

time between estimates is kept small. Now, if the system is relinearized
after i(ti+) is obtained, then the error state §§(t1+) will be zero.

Recalling equation (3-3), rewritten here in terms of the error state:
. _ “ 4 .+
Sx(ty 4+ 1) = o(ty 4 gy tys x(e57))  Sx(ty ) (3-18)

where the notation is meant to convey that ¢ is a function of é(ti+) in
addition to tj 4 j and t;. It is apparent that if ﬁi(ti+) is zero, then
ﬁi(ti +1—) will also be zero since equation (3-18) is linear. 1In fact,
using the notation Eé(t/ti) to indicate that the estimate of éi at time
t > ty is based only on measurements through time t;, then sx(t/ty) will
remain zero throughout the interval [ti, ty + 1] g

Now, considering the neasurerment update for the linearized svstem

at the next measurerent sample time.

sx(ey 4 1) Sx(ty 4 7) H Kty ¢ 1) fglty 41) - By p) x(y 4 g7)

K(ty + 1) ézey 4+ 1)

h

Rty 4+ 1) z(ty 4 7)) - h x(ty 4 2/t), 5 4 1 (3-19)
where K(tj 4 ;) is computed using matrices evalvated along the most re-
cent nominal trajectory i(t/ti). So far, the state deviation has been
estimated between measurement instants as zero and at the measurement

update point as given by equation (3-19). The {ull state estinate

47
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l(t/ti) between measurement instants t, and ty 4 ] must therefore

be given by the solution to the equation:
Perep = £ [Rerep, ] (3-20)

Since the deviation is zero throughout this interval. At the

measurement. update time t; 4 j, the state is given bv:

X, P = 2 e/t F ox(ts 4 17)

(3-21)

|

X(ty 4 p/ty) + Kei+ 1) [g(ti + 1)
B I EYAN N 1]]

which is the state estimate update equation for the Txtended Kalman
Filter.
§EEE§CL£§L§£QR§R€EBEL§P§rEpgﬁﬁﬁ_gﬂHEFEEEi_

The equations for the Lxtended Kalman Filter are surmarized as

follows:

Propagation: The state estimate and covariance are propagated as:

a R By +1 .
RIS (CHRE j £[Reren), e] ac

ty
or equivalently by integrating: éﬂt/ti) = j_[ﬁjt/ti), g] from

: Lo o o o . N
t; to tj 4 1 usinz the initial conditlon,_i(ti/tl) = x(ty )

i

= ~ + ~ +
P(t; + 1) = »(ti 4 1» b4 x(ti )) P(tsh) ¢T(ti + 1, tys x(ty ))

i+ 1

- "
+--}P @(ti + l,x;i(ti+)) G() n{1) GT(T) ¢T(ti+l, 77 x(ty))dr

ti 48
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~ whicl. is equivalent to integrating
f’(t/ti) = F[t;g_(:;)] P(t/ty) + P(t/ty) FL [t; g(t;)]
+ G(t) a(t) 6T(e)
from time ti to t; 4 1 using the initial condition:
P(ty/ty) = P(tgh)

Measurenent Undate

The state estimate and covariance are updated as follows. Define:

K(tgs x(cg _ 1) =

~
r

P(t.7) Wl(rys 50ey - 1)) [n(ti; (TR DR I (TR I L CT R I C P )]

( + R(ti)]'l
Bet) = 2 o+ Kl o) [ e -+ ondie), ey ] §

§_

P(ti+) = P(t;7) - K(ty; ﬁ(ti_ - 1M nceg; zc'_(ci - 1)) rley) j

Comparison with Basic Kalman Filter

The above equations are essentially similar to equations (3-3),

AL e nn AL

(3-4), and (3-6), (3-7) for the basic alwan Filtcr. liowever, the
gain matrix X for the basic Halran Filter can be precomputed since it
does not depend on the current filter estimate at any time. This is
not the case for the Ixtended Nalman Filter in which the matrices T,

( h (and %) are functions of the current {ilter estimate and conscquently
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K is a function of that estimate also. Similarly, the transition

N\

matrix varies as a function of x and thus P is a function of the

estimate.é during propagation. This therefore is one major difference
between the basic and Extended Kalman Filter formulations. The equations
for the propagation and update of the covariance matrix P are coupled

te the state estimate X.

Application to Tracking Problem

The purpose of thils study is to examine the performance of a re-
duced order filter model of the system. This involves carrying out a
covariance analysis which will be described in the next section. The
covariance as a function of time will describe the filter and truth
model performance and there will not be anv requirement to propagate

the actual filter estimate x. liowever, the matrices F and H which

SN

result from linearization of a non linear functions £( , ) and h( , )
respectivelv must be linearized about some non-linear reterence trajec-

tory. For this reason, the non-linear state equations of motion are in

fact propagated. Thus, the true filter would use the matrix F [t;‘i(ti - 1+)]
to propagate fromn t; - 1 to t; where éﬁti - 1" is the initial condition for
the trajectory segment, up to measurerent time ty, along which F is eva-

luated. Similarly, the matrix H [ti;.i(ti _ 1+)] would be used for the

true filter to update the P matrix at time t;

i+ For this analysis houvever,

the matrices T [t; gfn(ti _ 1)] and H [ti; En(ti)] are used. The reason

LT DI PP

for tiiis 1s that x(t) is not available in the covariance analysis, and
to obtain x(t) with one run would not suffice. 1In fact, Monte Carlo
techniques would be reruired to find the PMS performance of the filter

if %(t) were uscd. In this case, the benefit of doin~ the covariance

=

analysis would be lost.

Maas
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o, Thus, evaluation of matrices F and H using x,(t) rather than éﬂt)
is one fundamental limitation tc the covariance analysis but necessarily
this limitation must be accepted and it should be recalled that the

covariance analysis is the first step towards 1 full !onte Carle analrsis.

TSI YUY VRS

TIET
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IV. COVARTANLCE ANALYSIS OF SUDOPTIMAL FILTER DESIGN

Objective

Section II developed the true svstem state and measurement models
for the aircraft to satellite tracker. 1In fact, to use the expression
'truth model' to describe these equations is incorrect. There is no
wav of predicting exactlv what the precise true svstem performance will
be. However, the equations were developed taling intc account all
reasonable system disturbances and thus renresent the best approximation
to the 'truth model'. The resulting nodel has 61 states and would there-
fore be impractical to implement on board an aircraft where comnutational
speed and storane capabilities will be limited. A search will thus be
conducted to find a reduced order model vhich will adequately model
the true svstem. This will involve making simplifving assumntiors and
will result in a sub-optimal desicn. The Extended Kalman TFilter design
will be based on this sub-optimal model and it's performance will in
turn be sub-optimal. Under these circumstances, a studv must be under-
taken to evaluate the suboptimal filter estimation error performance and
tne sensitivity of these errors to incorrect or incomnlete dvnanmic or
statistical modeling. This studv is commonlv referred to as a sensi:ivitw

analysis.

The Lcuations for Semsitivity Analvsis (Ref. 2 and 14)

The following will develon the cauations for tie sensitivitv analvsis
of the sub-optimal filter desien. In practice, the filter estirates
resulting from using the Fxtended Kalman Filter with a reduced order
system rodel would be used to provide some closed loop control to the
systen. liowever, in order to simnlifv the developrent, the effect of

such control inputs will be ignored. Reference 2 shows how the cauations
52
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are extended to include control inputs.

Truth Model The truth model equations representing the most detailed
medel of the real world were developed in section II and are written

below using slightly different notation:
x(6) = Fg(r) xg(e) + Ggle) wg(t) (4-1)
vwhere
Xe is an n, - vector denoting the true state
Fg 1s an n; x n, system matrix
Gg 1s an n, xm gain matrix

We is an m, vector of white Gaussian noilse inputs with zero

mean and variance E gs(t) yg(r) = QS(t) §(t ~1)

Note that equation (4-1) is in fact linear whereas the truth model
equations are not. Equation (4-1) could be considered to represent the
error state system model described by equation (3-14) section III.

Since this is a linear equation, the Kalman Filter theory can be applied

providing that perturbations from an assumed trajectory are small so

H

E>
f
B
o
b
@

that linear effects doninate. ;

Similarly, the sensitivity analysis to be described here assumes
linear equations and could therefore be applied to the linearized error 3
state equations developed in section III within the region of small

perturbations.

A set of discrete measurements are available at times ty and can be

53
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;
, - described by the equation:
1 .
which is analagous to equation (3-16) section III, and
2Zg is an r - vector of measurements
Hg is an r x n measurement ratrix
Vg is an r - vector of Gaussian white noise inputs with
. T \ = . :
zero mean and variance E zs(ti) XS(tj} RS(tl) 1, 3
Filter llodel 5
The filter model is defined to be the reduced order model to vaich 1
the Extencded Kalman Filter will be applied. Again, this is assumed to j
(' be linear and thus the resultant scositivity equations will be valid
1

only in a region of small perturbations about the nominal trajectorv.

-

xp() = Fp(e) xp(e) + G (r) up(t) (4-3)

vhere:

i et

xF is an n - vector denotins the filter state (n < nl)
- 2 2

Fp is an n_ x n_ systew matrix
2 2

Gp is an n, x m, ~ain natrix

Vg is an m, vector of white Cuassian noise inputs with zero rean ;

- E
and covariance: K gr(t) e (%) = ﬂF(t) e - 7)

§

{ The filter weasurement ecuation is: '
= 1 R { —bh

z,(ty) ne(ey) xpley) 4+ v (t) (4=4) i

b
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e where
zy is an r - vector of measurecments

HF is an r x n, measurement matrix

PR AT A

3 Vp is an r - vector of white Gaussian noise inputs with zero

mean and covariance FE { vp(t,) XFT(tj) = Rp(ty) 84, j

Applying tih: Lasic Kalman filter equations to the above filter model,

the filter estirate between measurements is given bv:

: xp(8) = Fp(t) Xp(0) (4-5)

with associated covariance matrix satisfving the cauation:

I;F(t) = Fp(t) PF(t) + Pp(t) FFT(t) + Gp(t) Op(t) GpT(t) (4-6)

Defining ti_ and ti+ as before and after a measurerent incorporation

at tiume t;, then at a measurement update, EF(C) and PF(t) are given bv:

1]

-1
KF(ti) PF(ti") HFT(ti) [I:F(ti) PF(ti') H':f,(ti) + RF(ti):I

xp (6 = xple) b Kelep) [Es(ti) - 1LGEy) éﬁtf’]“’””

PF(ti+) = I)F(ti") - KF(ti) HF(ti) FF(ti_) (4-8)

where

A .
xp(t) denotes the filter estimate of x-

A
PF(t) denctes the covariance matrix associated with Zy(t)
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AT

sy

! o~ Note in equation (4-7) the use of the vector of measured values

cs(ti), since the actual mecasurements will in fact be taken from

the true system. Now, if the state vectors x, and Xq are arranped

F

3 such that:

3
e

2 2 (4-9)

0((n1 - n% X nz)

g then an error vector gﬂt) can be defined such that:

FYINhY

e(e) = xq(t) - Tép(t) (4-10)

PR R TR

Note that there is a loss of generalitv in this assumntion, the

i filter model states would not in general be selected truth model states.

i Rather, *the filter states would be linear combinations of the truth model

states. liowever, in practice it is usual that the filter mocdel is in
fact the truth model with selected states rermoved. Tf this g not the

case, tiuen the T matrix could be defined differentlv without char-ing

LNt i pat o Al ST oo

the final results.
The objective of the sensitivitv analvsis ic to examine the pro-
pagation of the error vector Eﬂt) with tire and the pronagation of the i

covariance matrix of e(t) defined as:

at LA A

Peo(t) = E |e(t) ()

Now, e(t) is a vector exnressing the ervor cormitted bv using the
particular filter model and Peo(t) expresses the covariance of that

error. The {alman Filter covariance PF is also a measure of thc error

-—

A
in the estimate .. but rav not neceswarilv reflect true performance of
( 1. h !
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the filter. The sensitivitv analysis therefore is a method of comparing
the filter estimate ip(t) with the true svstem state x5(t), by propa-
gating e(t) and P,,(t), and thereby determining the true error obtained
by using a particular filter formulation. The evaluation of P,, and
Pp is commonly referred to as a Covariance Analvsis while the cxamination
of E(t) over an ensemble of runms is usually called a Monte Carlo analvsis.
In order to study the behaviour of e(t), Pee(t), and PF(t),the aurnented
state vector Z(t) is forned such that:

y(e) = fe(o)

- . (4-11)

x(t)
where Z(t) is an n + n, dimensional vector.
The differential equation for this aupmented state vector is

therefore:
z(t) = Eﬂt) = FS Xg + G, ¥g - T F, Xp (¢4-12)
x(t)

where the time subscripts on the right side are droppec for claritv

Rewriting equation (4-12) gives:

. FFS X t+ Gg we T T Fpxp + Fg Txp - FgTxp
y(t) =

i Fp Xp

(4-13)
o - -
= Peleg - Txp) + (T T - TTg) xp + Cg ¥
i Fp Xp
57
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-~ = FS e + (FS T - T FF) Xp + GS Yo

“
i FF Xp
1 which can now be written Iin mat:’x form as:
)
3
: FS (FS T - T FF) GS
1f y(t) = y(t;, + Vg (4-14)
;
j 0 FF 0

or
y(t) = Fv + Guw

with F and G defined as in equation (4-14)
Betv een measurcrents, the covariance of v(t) propagates according

to the differential equation:

P = FP + PFL + Ggacl
:
where Q = Qg and F and G are cefined above. :
and
P,o(t) P, (€)
P(t) = _
Pyr(t)  Ppy(t)
and P“Z(L) is equivalent t- the natrix ry(t) from the Valman Tilter 3
‘ ) 4
equations (4-0) and (4-8). 2
At a measurement undate, %, vill ciiange according to ecquation
(4-7), vhile xq will not channe since contrnl iaputs are not censiderecd.
i.e.: v N
+ = x - -15
Xs .‘:.‘S
cet = %7 o+ Fo(Ce = Up oxeT) (4=16) ]
X¥ Xr SFNES YF Xy )
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F
(r- where the - and + signify before and after incorporation of a
measurement respectively,
Sy A ) _ - _ _
> Xp' = Xp + RF(HS xg~ - HF Xp + xs) (4-17)
and since:
] _e.+ = -—S+ - T.:_{F+
i =] i(s - T [‘{r 4 KF(‘{S ES_ - }F ‘(F + VS)]
ﬁ = (xg - Txp) T Kp Hg (7 - T xp7)
‘ {
i \‘
+ TR (p - IgT x~ - TEKpuy,
= (I - TKF }IS)_Q_ + T}\r(”l_ - FKg T) Xp - T Xp Ve
and from (4-17),
]
xt = R 4+ KMo xe - Ko lo R 4 K. v ;
XF Xy F s Xs F F Xr r s ;
+ x o= X0 4 Kp il ox. - el T R0 4 Kol T R
Xp ! S e He op Uiy I 3 E F
!
3 - T v ooy . o = = E
= Ky 1!5(.13 - 151,) + (I + Kp llg T = Kp ”F):‘“ + Kp Vg )
( 3
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- = KF Hg e+ (r + KF HS T - KF HF).EF + KF Vg

and thus the augmented state vector after incorporation of a measure-

ment is given by:

+ I T K_H T K_ (I H. T)

E— F g I\F ‘F S =
+
1 = =

= + g g 1 ¢ 1 oS-

hF }\F ”S I+ I\F I‘S T - I\F }.F e

-T KF
+ Vo (4-18)
Kp

y = Ay + Byg

where matrices A and B are as defined in equation (4-18).

The covariance matrix P(t) is updated by a measurement as tollovs:

+ T - -

_ - T
-+ P+ = E :(A v + b Xq)(z v AT + Ve BT);
= E {A vy~ v T AT} + F { b ve \_—r ,\"‘}
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- = An{y‘y‘T}AT + BE{XS_X'T}AT + AL {y vTho
+ BE [ Ve Vol } B' (4-19)
¥s Yg :

Now, the noise vector is uncorrelated by hypothesis with the state x

and the state Xy and therefore the transformation of xp, T xp. Similarly,
the estimate Xy and vg are uncorrelated which implies that yg and v

are uncorrelated. Thus the second the third terms in cauation (4-17%)

above are zero leavine:

_ T
Pt = AP AT + B Rg T (4-20)

Summary of Propagation and Update Lquations for Covariance Analvsis
SR I ©8 EITOHe el presiice Bl 0! TS LAt Ve

The equations for prcpagating and undating the covariance matrix P

are summarized as follows:

(. Propagation:
P(t) = F(t) P(t) + P(t) Fl(t) + G(t) 0g(t) 6T(t)
where
P(t) = E {Zm f(t)}
A T
y(t) = [_e_Tm gc_FT(t)]
e(t) = (g(H) - T Ep(®)
r
S c)]T
!
2 [ r (Fe(t) T - T F_(t))
F = FS t) gt .
[ 0 Fp(t)
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XA

\ A
—~ G(t) = Gg(t)
] -
: 0
E Update:
+ - T, . T
P (t) = A(t) P (t) A" () + B(t) RS(t) B (t)
E where:
(I - T Ep(e) Hg(e) T K(6) (ip(t) - Hg(e) T) T
A(t) é
" KF(t) Hg (t) I+ KF(t) Hs(t) T - Kp(t) HF(t:)_
e A 3
{ B(t) = |-T Kp(t) ;
Ko (t) ]

Application of Covariance Analysis to Fxtended Kalman Filter

The problem under study is non-linear and in section III it was
shown that the equations could be linearized about some reference
trajectory. Application of linear filtering theory to the linearized

equations resulted in the Ixtended Nalman Filter. The above ecuations

for propagatien and update for the matrix P(t) are linear however and
it is necessarv to examine the uetiod of implementation of these eaua-
tions to a non-linear problem. The state equations for btoth truth and
filter models must be linearized about the reference trajectorv. The
resulting linearized equations will be used in the above covarieunce
analvsis equations. The results of the analysis will therefore be
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CT% highly dependent on the assumption of linearity, and in order for these
assumptions to remain valid, the interval between measurements must be

made small compared to the system truth model time constants, and per-

turbations about the assumed nominal trajectory in the interval, must

TRy

be small.

Finally, it should be noted that the trajectory linearization is

z carried out about x,(t). In a practice, if linearization were required
then éF(t) would be used. However neither x,(t) nor iF(t) will be
identical to the true system state Em(t) which 1s never available and

ideally linearization would always be carried out about Em(t)'

et Siiit Sl

,zrl( D
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Lo V. INITIAL CIOICE OF FILTER MODEL

Objective

The developnent of the true system state and measurement equations

in section II resulted in a 61 state truth model which used 5 measure-

ments. The objective of this section will be to find a filter model
by simplifving the truth model equations and thus reducinn the model
state dimension. The filter model will then be evaluated by the co-

variance analysis method descrited in section IV.

Filter Yodel State Lauations

Examiration of the truth model statc equationssurmarized ot the

end of section ITI shows that the basic system dynamics is renrescnted

IORRESITY

by the states 1 to 6 and 9 to l4. States 7 and 8 were introduced to

9 ( model the uncertainty in drag aand solar pressure perturbations respec-
tively due to the vehicle size and shape. The remaining states 15 to

3 61 were introduced to model measuring device uncertainties in the

measurements of angular trachirg rates, tracior acceleration, ranze, %

and tracker ancular deviations.

Siwplificaticn of I'ruations 1 to 6

Truth model state equations 1 to 6 describing the propagation in

2 bk D) Sy i B

of the vehicle orbit are:

-

, £ = % (5-1)
. &

X2 = XS (5-2)

) Xy = X (5-3?

64
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: ( X, = Ag; + Ad; + As) + Am; + Ap; + W, (5-4)

I: .

; Xg = Ag, + Ad, + As, + Am, + Ap, + W, (5-5)
X = Agy + Ad; + As; + Am, + Ap, + W, (5-6)

ot P

Consider the low orbit problem which is investigated in particular in

this study. The basic orbital profile actually testad serves as an

mAssanie Tigta ol

illustrative example. The vehicle considered is in a polar, circular
orbit with an altitude above the earth's surface of approximately 200 km.
For this orbit, consider a typical small vehicle with a ballistic

% coefiicient of 0,015 m2/kg and a solar pressure coefficient equivalent

i to a vehicle with a projected surface towards the sun of approximately

10 m?. Under these conditions, the terms in equation (5-4) for example

( would have deterministic values of:

Ag, = =7.55 m/s2 - Acceleration due to full rravity

Ad; = -9.0 x 107° m/s2 Drag perturbation

As; = +2.0 x 1079 m/s? - Solar perturbation !

Am; = +5.0 x 10~/ m/s?

Lunar perturbation

Apy = -2.0 x 107° m/s?

Solar pressure perturbation

where tlie sun and moon are positioned for worst case effects, and the
vehicle is lying in the Greenwich meridian at a latitude of approxi-
mately 30°J. The white noise driving term W, accounts for unmodeled
effeccts such as deviations in atmospheric density from the model and
/ unmodcled gravitational terms. W, would typically be zero mean white
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noise with a distribution standard deviation of approximately 10_9m/52.
The two-body point mass acceleration accounts for approximately -7.548 m/s?
in Ag,. The appropriate terms driving equations (5-3) and (5-6) have
similar relative magnitudes.

The model proposed for the filter therefore assumes a two-body
orbit and reglects drag, luni-solar perturbations and the polar pressure
perturbation. For long orbital times, this would of course be a poor
approximation, but a typical traclkiing pass with the assumed profile
lasts for only 1/20th of the orbital period. The errors introduced by

these approximations are accounted for bv increasing the strength of U

1
to give a distribution standard deviation of approximatelv 2 =x lﬂ—3 m/s?.
The resulting state equations are:
X = X (5-7)
1 )
X, = X, (5-8)
2 5
. - . _q
X, X (5-9)
)-(q = =l X_
ry? + W (Sl
. Lo “u ‘:2 Ty
X5 = _1L.;_ + Wy (5-11)
Ty
§ = -}y X
6 RN
; +ow (5-12)
Ty

vhere Mg s the earth gravitational constant and r, is the distance

from eartih center to vehicleg
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(:V Simplification of State Equations 9 and 10

The truth model state eauations 9 and 10 are:

Q -1 2V
= = A - I w + w w
: “Lsy R r, = LSy LS, Ty
(5-13)
¥
i Se
; + - —= A + w [6n - Sew ]
]
* 1 2 V.
w. = 2 - W w.
LS, R Ary = LSy — “Lsy Ty
(5-14)
&n J
] + - — A - 6n wp - €@,
? R TYX "LSy [ Ty Tzd

TYTRTIEREST

3

where the bracketed terms { « } result from using tracker accelerations
ArX’ ArY’ ArZ and angular velocity wTX rather than true line of sight

(. parameters Arelx’ ArelY’ Arelz’ and wLSX‘ For high accuracv trackins,

the angular deviations ¢ and én will have sacnitudes on the order of

oo LS Ly ke

-5
<

10 rad or smaller. TFor the profile under test therefore the braclketed

,1-.1-;

terms have magnitudes near 107!! which are approximatelv 5 orders smaller
> Pr 3

- 3 N .‘ 3 " 1
than the magnitudes of wLSY and wLS, . Thus for the filter, the bracketed

terus are replaced by zero mean white Gaussian driving noises each having

a 1 - sigra value of approximately 10-11. The resulting filter model

equations are:

. = 1 A . 2V + A + W (5-15)
wLSY - R ra R wLSY stz LTX 4
E
. 1 2V = i
= = A - T - w + W (5-16)

PRt Y N O
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'e The remaining state eauations are:

«
t 6n = mLSZ - u,\TZ = Se wTX (5"17)
i
% Se = wg, - e, t énup (5-18)
1 R = U (5-19)
[ 0
k el a
: Vy = Arx + R(u-LSY‘ + L.LLSZ )y +  In ArY - e .\.r7 (5-20)
3 Equation (5-20) can be sirplified bv rerovine the terms “n A
A

r Y
1 and de Ay . Since In and éc¢ are small, the tvo terrs have marnitudes
X

5 orders smaller tl.an Veo The filter state equation for s

L.acd,

thus hccores:

) 1 = " 2 R & T =

|

: where Wg is a white Gaussian noise vith a distribution standavd deviation

G i

K& y , - -5

1 of approximately 5 x 10 “m/sec.

: Thus far, the orbital dwnamics have leen sirplified, and the state

;

—;\ . » 3 .
equations for the true proparation of the line of sicht anpgular velocities
and Vy have been simplified. As a result, the first 14 truth wedel state

{

3 equations are reduced to 12 filter rnodel state equations vhere tae tuvo

;

]

equations for tihe ballictic coefficicnt and solar pressure cocfficicent

are no longer requirca,

Filter Fodel Yeasurerwnt Jauations

The swvstem trut! —odel roasurensnt ccuations are suriarized in

section IT. The 9 ccuations were reduced to 5 bhv considerins tne meq-

surcvi.ent of MT s s Loy, and Am L0 be parareter reasurerents vhich

could bLe 1necorporated into e s

(mid
re

¢ovquationas.  The reasuresoent coun-

tious are all similar ia that ecacn ceunaticrn renre-ents a soasurterent of
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the true quantity corrupted byv other factors. For example, the measure-

ment ecuation for wp 1s repeated below:
Y

3
u%& = wry + Bgsfy wTY + . i Bngi Ayt CgY
(5-22)
+ A Cgma W + V2
Y

In this equaticn, QTY is the unknown quantity to be mecasured. The
remaining terims are non-deterministic. The term Bgsfy wTY i= the nro-
duct of a random bias and the deterministic but unknovm quantitv wp .
Thus the product is also non-deterministic. CgY is modeled as a first
order exponentially time correlated random variable. In fact, there
are fcour types of quantity, deterministic, random bias, first order
exponentiallv correlated random variable and pure white noise.

For the truth model, in the absence of better information, the

randon bias terms are chosen to have zero mean, i.e. x = 0, with

variance derived frou experimental data. The gvro drift paramecters

would also te derived using experimental data. The white noise temrm

V, accounts for unmodelea effects such as higher order non-linearities.
For the filter model, it 1s assumed that in all the measurement ecuations
the total cffect of the non-deterﬁinistic terms can be accounted for hv
a simple white noise added to the deterministic term in each cauation.
The whitce noise is Gaussian, vith zero mean and variance chosen to be

approximately equal to the variance of the sum of all the non-deterministic

terms.

In practice, the additive white noisc term increases the uncer-

tainty in the measirerent.  If the above filter measurerent model riven
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poor performance in the cevariance apalveis, it mav be possible to
increase the variance of tiwe vhite ncise further, thus indicating addi-
ticnal uncertainty in the rmeasuremeat model. Alternativelw, the model
could be chanred to include just the ~vro drift terns for examnle.
As a first attenpt at modeline however, the additive white nolse model

has tne simplest form.

————

Surmzary of State anc l‘easurerent Lcuations

Using the siuple measurement models described above, the filter

state equations and measureizent eccuations are:
State Lquations
(1) il = X,
2) X, = X

(3) X, = X

-H
(4) X = o Xy + W,

(5) x, = 2@rz oy

6) x = Fa*3 4+ y

—iar 3
6 rVT
(N © = -1 B, = £ Vg w + owpg wp Wy
LSy 5 Cp = LSy z Ty
® wg, = oA - Zlrug, - owgu Vs
>z R Ty R Z Z X
70
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£ — \ - o
(10) é: = We, — W7, * én w
.Sy I‘\ rx
(1D Ro= V.,
P 0 = e, 2 .2
(12) \r Arf{ + L(L,LSY L uLSZ) + WG

ﬂeasurcwent Fauations

(1) w = + vV
A'i TX l

(2) oy = ey, * OV

(3) sz = wTZ % V3
g
(4) A = + vV
) Ty, Ay 4
(5) A = + v
lYM ATY 5 §
(6) Ap = Ap + V
g (S k-
Zyg vA ;
X
(8) €&ny = K, 6y + Vg
(9) RI-I = KR R + Vg

The measurements of ATX, ATY, AT7 anc wa as in the truth model,

constitute measurements of system parameters. The measured parameters

can thus Le substituted into the state equations so that the actual

71
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measurement cquation will not be used as part of the {ilter measurement
rodel. low, 1f this 1is so, there {s ne real need for the siuplificd
veasurement models desceribed by equations (1), (3), (5), and (6) except

} for the purposc of linearization. In linearizing the state equations,
?

accouni nust he taken of the fact tnat a ressurerent is in fact a

T T WY

linear or non-linear corbination of svster states. Thus in order to

% use the 12 state nodel, the simple reasurcrent model must be assumed.

]

% The remainine measurements are direct rreasurements of states of

r

4 the svstem, or in the case of e and o pseudo-measurcnrents of states
: Y %

: of the system. Lquations (2), (3), (7), (8), and (9) constitute the fil-
] ter model measurerment vector.

¥ Appendix C shows hou the state and measurement equations of the

]

! filter model are linecarized for application to a covariance analvsis

i of the Extended Falman Filter.

}

:

~

r’

%

{f
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VI. RESULTS

Test Simulatlun Data

Appendix D lists the truth model simulation parameters used for
the initial evaluation of the filter model. The data corresponds to a
typical set cof measuring instruments. Sore simulation parameters were
changed to improve the measuring iusstruments to 'state of the art' quality,
and the filter model reevaluated. The actual chanpes will be discussed

later.

Test Objective

The primary test objective was to demonstrate that good performance
can be cbtained using the filter model described in section V under
varying conditions. These conditions were representative of differing
qualities of measuring instruments. 1In order to achieve thls objective,
the filter wodel was first 'tuned' asainst the set of sirmulation instru-
ment specifications described in Appendix D. The process of tuning
involves adjustment of the Q and R covariance matrices in the filter
model, often by trial and error, until satisfactory performance is ob-
tained. Conceptually, the tuned filter is the best representation of
the truth model, by the simplified filter model. Once the filter model
had been tuned, and evaluated, some of the measuring parameters were then
changed in the truth model and the filter medel retuned to account for
the changes.

Tuning the Filter Model

The covariance analysis method described in section IV compares the
true estimation error variances resulting from the use of a particular

filter, with the error variances predicted by the filter itself. Thus,
73
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given a state vector estimate x(t) where the true state is xp(t), the

error 1s nonnally expressed by the covariance matrix:
Py = o [E0-x.0 ] [0 - x5 @]

Since this matrix may be of large dimension, it is usuallv more con-
venient to examine the square root of each dlagonal element of the matrix.

Thus the error in x;(t) is given by:

Je® = \F (20 - x1t<c>]2

A
which 1s the | - sigma value (standard deviation) for the error in xl(t).

Denoting the true error in the estimate of a state as the svstem error,
and the error preducted by the filter as the filter error, then the
objective of tuning the filter model is to ensure that the svsten error
and filter error have very nearly the same magnitude. It 1s quite pos-
sible for the system and filter errors to simultaneously diverge, indi-
cating an unstable error. Even in this circumstance the filter 1s still
tuned, provided the two magnitudes are equal. In practice it is usual

to tune the filter so that the filter error standard deviations never
underestimate the system error standard deviations. In this way, the
filter model accurately represents or slightly overestimates the real
error and therefore allows some margin of uncertainty. Fig. 6 and 7 show
a typical situatior where the filter error for X(14), which is the range
rate V., converges after 100 seconds to approximately 1.5 m/sec, whereas
the system error is in fact 2 m/sec after 100 scconda. In this case, the
filter is underestimating the real error and although its performance
appears good, in reality it may not be acceptable. The process of tuning

the filter is somewhat arbitrary in that several variables can be ad-
74
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.
3
1

justed. For cxample, the initial condition cn the variance of a state
will affect its transient behaviour, the measurerent and state driving

noise covariances vill affect both the transient and steadv state beha-

viour and in general there will be one set of conditions which produces
the test perf{ormance. This set of conditions can be highly interdependent

so that the process of finding the correct values usually requires an

DR RSt b i ik A e

element of trial and error

Retfabdl

e

Transient Behaviour of Tilter

Rl o

; The transient behaviour of the filter depends on three factors, the
choice of initial conditions, the measurement noises, and the state
equation driving noises for the filter model.

Initial Conditions The choice of initial conditions on both filter

error and system error can severely affect the transient behaviour of

st s Lo

the filter and can in fact cause divergence. TFigs. 8 and 2 show the
behaviour of the filter and systen errors raspectively over a 200 second i

time interval. The state is the inertial satellite position element X,. 1

i The i{ilter error initial condition 1/P“(co) was cnosen as 100 km while

the system error initial condition was chosen as zero. The initial g
trensient subsides after approximately 120 seconds, and both curves i
E tegin to show a divergent characteristic. It 1s interesting to note
3 that during the divergence, the filter appears to be reasonably well
3 tuned in that both curves show sinilar magnitude errors, but the filter

is overestimating the error by abocut 20%Z. In this case, the divergence

is not caused by the poor choice «f initial conditions. Figs. 10 and 11 3
show the same state X) with a different set of initial conditions on the

€' filter and system errors respectively. Again, the divergence 1is apparent,
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and the initial transient behaviour 1s nuch improved.

Measurementand Driving loises Consider the state wLSY which is

the line of sigiit angular velocitv along the line of sight y - axis.

Appendix C gives the state equation driving noise standard devliation

as 10~ ! rad/sec? and the measurement noise standard deviation as
| 1.6 x 107® rad/sec. These values uaore derived by .nsidering the truth
’ model simulation data in Appendix ™ and compensating for the effect of
ail the simplifications from truth model equations to filter model equa-
tions. Using these two values, the filter diverged rapidly. Several
test runs were made in which the noise figures wer. adiusted to improve
performance. Figs. 12 and 13 illustrated the tenaviour of the filter
using a driving noise standard deviation of 2.7 x 10~7 rad/sec and a
measurement noise standard deviation of 6°5 x 107° rad/sec. In this
case, an coscillatory transient occurs with a 40 second period and 100
second settling time. By further adjustments, the transient was almost
removed. Figs. 14 and 15 show the final performance curves where the

driving noise standard deviation was 5 x 1077 rad/sec? and the measure-

ment noise standard deviation was 2 x 107® rad/sec. The example illus-
trates that it is often necessary to carry out verv fine adjustments to
tune the filter model. Figs. 14 and 15 were obtained after 8 distinct
adjustments,where each adjustment required a computer run to show the

performance. Also, it is sometimes necessarv to increase the strength

of the state ccuation driving noises very considerably, in this case by

4
a factor of 10 , to cbtain good performance.

Determination of Vehicle Orbit

In the truth model formulation, no direct measurements of the vehicle

82 3
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inertial position and velocity are included. 1In fact such ineasurements
could not be made directly from the vchicle without using an inertial
navigation system. It is feasible that measurements could be taken by
a pround station and transmitted to the aircraft during the pass.
liowever, the system was tested assuming only measurements of tracker
acceleration, tracker angular velocity, misalignment angles, and range.
The inclusion of further mcasurements might be a logical extension to

this study. It is interesting to observe the behaviour of the filter

with the present formulation. Figs. 1Cand 11 illustrate the error stan-
dard deviation for inertial position X;, for the filter and system respec-

tively. Figs. 16 and 17 show a very similar trend in X and Figs. 18 and

L e

16 illustrate the error in inertial velocity state ¥, for filter and

system ! espectively. The typical error standard deviation in a position

component is about 40 km and that in a velocity component is about 190

PR e

n/sec. The following observations can be made:

i~ a. The transient performance is ex’remely slow.
b. Initially (see Figs. 18 and 19) the measurements have no effect

on inertial velocity errors.

1 c. As the inertial position estimate improves, the measurements

e

begin to give an improvement in the inertial velocity esti-

epdteird

matzs. The time lag 1s approximatelv 40 seconds.

AL

d. The improvement in the inertial velocity estimate during
the complete 200 second run is relatively small. With an
initial condition of 200 m/sec error standard deviatiom, the
final error standard deviation is 193 m/sec.

e. Towards the end of the 200 second run, the position estimate

errors begin to show a divergent characteristic. This could
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. be due to the fact that as range increases and the satellite
goes out of view, the neasurements begin to have less effect.
The main conclusion to be drawn from these observations is that

the orbital estimate is not siznificantly improved bv the measurement

Wy FORT T

information. The latter is coupled into the orbital state equations via

Gorisna n ko

the relative acceleration of the velillce tc the aircraft, expressed in

trazker coordinates. This in turn is a function of the aircraft inertial
3 acceleration, the vehicle inertial acceleration which is dependent on the
vehicle inertial position, and the coordinate transformation matrix from

tracker to inertial coordinates, which is assumed known. The coupling

E ic complex: 1if a mecasurement of LSy improves the estimate of that state,
; then this improvement is coupled through Arz into the vehicle inertial

[ position estimate. Recalling the filter model state equation for WLy *

[ (\ - "“Arz _ 2 Vr

It would seem equallyv important, since Arz is a function of vehicle iner-
tial position, for the estimate of the vehicle inertial position to be
good in order to maintain a good estimate of ULSy* This loop in the

coupling will be discussed later.

Tracking Accuracy

The accuracy in the tracking is expressed bv the standard deviation
of the errors in the misalignment angles 6¢ and dn. These errors arec in
turn affected by the errors in line of sight angular velocities, range,
range rate, and, as already discussed, the vehicle state. Figs. 20 and 21

o show the standard deviation of the error in the misalignment angle én.

;
§
1

The transient is short and a mean steady state standard deviation of

e

(-*-”'\
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0.15 x 107" rad is achieved. This translates to about 9 m off target

center for maximum range of about 600 km, and about 2 m for minimum

range of about 100 km.

{ Effect of Orbital Estimate To determine how the orbital estimate
b

v

improves or degrades the tracking, consider equation (6-1). The ArZ
term effectively helps to provide a prediction of the range in Wy g
Y

between measurements. If Arz is incorrect bv say 1% then the change

in wLSY between measurements will be incorrect by a similar relative

k'

: magnitude. When the measurement is taken therefore,the antenna will be

o —
T

misaligned and some portion of this misalignment will have been caused

by the original error in Arz. The measurement information in turn

bty £0

couples back through A, to improve the estimate of vehicle inertial

position. The loop is of course continuous and the above simplified

TR OTE )

analysis was made to illustrate the following point.

ity

Given a worst case

situation, the typical error standard deviations in inertial position

e

of 40 k.1 as in fact produces an error in ArZ of only 17. Propagation

of this error over 2 seconds results in the misalignment angle of about

] 2 x 107% rad. This is small compared to the error standard deviations

shown by Figs. 20 and 21.

In addition, it represents the worst case |

effect., Supposing however that a tracking accuracy equivalent to a

misalignment angle error standard deviation of 10~%® rad were required.
The errors in inertial position would then bhe significant. There 13 a |
specific conclusion however which is quite surprising. To achieve an ;

error standard deviation of 107° rad in misalignment, an error standard

deviation of 40 km in inertial position can be tolerated, provided the

7

measurement update interval is small, i.e. of the order 2 seconds or less.
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iledifications to Truth Model

Objective. The purpose in changing the truth medel was to demon-
strate that the filter would perform over a reasonable ranpge of measuring
device precision. The tracking achicved with the baseline simulation
paraneters resulted in an error standard deviation in (¢ and &n of
0.15 x 10~" rad. This is equivalent to an error standard deviation of
9 m off target at maxinum range and 2 m at minimum range. Choosing
arbitrarily a requirement for 1 m at maximum range iaplies that the 8¢

and &n error standard deviations should be less than 1+7 x 10~% rad at

maximum range. The objective therefore was to wodify the truth model ;
to find the necessary measuring instrument quality to achieve this re-
quirement. In so doing, the filter would be evaluated over a diffcring
range oi measurement parameters. L
Approach  The approach taken was to investigate the effect of ;
improving the measurements of line of sight angular velocicy, tracker
nisalignment, tracker acceleration, and range. The tracker acceleration

and range measurements were first investigated. Adjusting the truth

model measurement parameters to make these measurements perfect had no
discernable effect on the tracking accuracy. In fact, the measurements
could be degraded by a factor of 2 in the case of range and bv a factor
of approximately 5 for acccleration, before tracking accuracy became
affected. The critical mcasurements were therefore those of line of
sight angular velocity and misalignment angles.,

Adjustment of Angular Velocitv and Misalienment angles  The process

of adjusting the truth model measurement parameters was slow and tedious

since each adjustment required a returing of the filter. The gyro drift
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term in tle measurenents of anpular velocities was found to be the largest
single source of measurement error. This term was adjusted progressively
from 107° rad/sec to 10”7 rad/sec. After each adjustment the filter was
retuned. The resulting error standard deviation in the estimate of é¢

is shown by Figs. 22 and 23. (Note that 6e¢ and 6n have identical error
characteristics.) The mean steady state error standard deviatlon'was

5 x 1076 rad, which is equivalent to an error standard deviation of 3 m
off target center at maximum range. A drift of 1077 rad/sec is in fact
close to the region of current 'state of the art' gyros. A further im-
provement in gyro drift to 0:5 x 10”7 rad/sec did not significantly im-
prove the estimates of §e and 6n. It was therefore concluded at this
point that a further improvement in the estimates of ¢c and ¢én could only
be obtained by improving the measurements of those quantities.

Tigs. 24 and 25 again show the error standard deviations for the
misalignment angles de and dn. These performance curves were obtained
by improving the angle track scintillation noise from a standard devia-
tion of 107® rad to 107 rad and totally removing the angle track bias.
The resultant error standard deviations for 8¢ is 2 x 10™® rad which is
equivalent to an error standard deviation of 1-2 m off target center at
raximum range and 0°-2 m off target center at minimum range.

Finally, Figs. 26 and 27 show the overall improvement to the error
standard deviation for the estimate of vehicle inertial position X,. .The
figure has been improved from about 40 km to about 20 km. Fig. 27 shows
the true improvement to be nearer 10 km. This implies that the filter

is overestimating the error by a factor of 2 and requires further tuning.
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Surmary of Effect of Truth Model M.difications

Bl pialidede b Matec ais

: To achieve the requirement of approximatelv 1+7 x 10°° rad for the
I error standard deviations in the estimates of 6c and &n, it was found

L necessary to (1) reduce the gyro drift standard deviations from 1076

: rad/sec to 10~7 rad/sec, (2) remove tle angle track bias errors, and
(3) reduce the angle track scintillation noise standard deviaticn from
107% rad to 1077 rad. Fig. 28 shows the family of error curves des-
cribing the adjustments made and the resulting performance. Each point

on the curve represents some five computer runs for the system.

Clearly, these results indicate some stability in the filter formu-
i lation over a small range of measurement performance., It is emphasized

however that only a small group of measurement parameters were tested and

the results are by no means peneral.

Various recommendations for modifications to the truth mcdel formu-

lation will be wmacde in the aext section.
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i VII. RECORENDATIONS AND CCLCLUSIONS

o

Addition of Further lleasurements

Coordinqgg_?rqmgg There are four basic coordinate frames used 1in

R - e ¥ S O WP

the problem, the earth centered incrtial and earthcentered rotating

o £ S S

coordinate frames which are related by the earth rotatici. rate, and the
line of sight and tracker coordinate frames which are related by the
nisalignment angles §e and 8n. The relationship between the tracker

coordinate frame and the inertial earth centered cos>rdi:ate frame was

established by assuming that the tracker base could be maintained

e v ot

inertially stable, and that the two angles € and § (see Fig. 1, section

I1I) were available (i.e. through perfect measurements).

It is somewhat unvealistic to assume that perfect measurements of

€ and P are available. In practice some type of resolver or integrating

device would be used and stochastic modeling techniques might be necessary
to model the device outputs accurately. Thus the inclusion of a realistic

measurement model for 6 and for f would be desireable.

Grbit Determinstion  The typical aircraft engaged in the long range

satellite trackinc role would probally be equipped with an inertial navi-

EZtyar oo crpad

gation system (TNS) to provide aircraft inertial position information.

Now let B; be the range vector from aircraft to satellite expressed in

Vi A e T AN A

inertial earth centered coordinates. Then if the aircraft inertial posi-

I
tion vector is RI and the satellite inertial position vector is R = |X;
A =S

X2 ;
I - gl L
Rg = Ry + R X3 ;
I I.T
= Ry CT R
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T R
For perfect tracking, R* is the vector [0 . Thus accurate knowicdge
» 0

T
of R C% which is a function of € and ¢, and Ri, provides an accurate
s

measurement of the satellite inertial position. Thus tlie measurements

of v and ¥ coupled with the INS measurement of Bk can be used to provide

AT

I
a measurenent of Rg.  Improvement of the estinate of satellite inertial

adebeod

position would lead to improvement in the estimate of satellite inertial
velocity which in turn would lead to an improvement in the accuracy in
orbit determination.

wow the sensitivity of tracking accuracy to the accuracv of the

orbital estimate was not totallv established. It was clear that the

Aot L g

critical measurements were those of angular velocityv and angular devia-
tions. lowever, using 'state of tle art' measuring devices, it may
still be possible to achieve improved tracking performance with a better

orbital estimate. The inclusion of IiiS position information is there-

fore considered desireable.

Alternate lethods cf tiodeling

Extending the above discussion further, if INS velocity information

were also available then an alternate model formulation is nossible. The

state of the satellite vehicle is completelv da2scribed bv inertial
position and velocity vectors. Similc:-lyv, the aircraft state is com-—
pletely described by inertial position and velocity vectors. In fact, :

the relative position and velocitv vectors from aircraft to satellite

would also be completely described by these four vectors. The tracking 4
problem is in essence a problem of estimating the relative position and
P velocity vectors, so that one method of modeling the svstem would be to

use inertial states for the aircraft and satellite. This would result
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in a 12 state model which is of the same dimension as the current filter
model and additional states could be included if necessary to account

for mcasurement parameters.

Considering the geometry of the tracking problem, the inertial
formulation might be better conditioned numericallv when target and
tracker are widely separated in tite inertial coordinate frame. 1I: . he
target and tracker are in a (lose configuration, in which ti-e magnitude
of the range vector is small compared ot the magnitudes of the two
inertial position vectors, then modeling the problem in the line of
sight coordinate frame would probably be better conditioned numerically.
When tracking a low orbit satellite, both situations exist. Initially,
as the satellite appears over the horizon, the two vehicles are widely
separatied inertially. As the satellite passes near to the aircraft
however, the range vector can become small in magnitude. The incorpora-

tion of aircraft inertial position measurements into the present formu-

lation is one method of meeting toth situations.

Method of Analysis

The filter was tested using the covariance analysis method. The
performance results are therefore valid only if the various approxima-
tions and assumptions described in section IV are also valid. The
Monte-Carlo analysis method does not make such approximations and
assumptions. The method involves making multiple runs using the non-
linear state equations and artificiall. generated white Gaussian noises.
Thus, provided a large number of runs are made, a general run performance
trend can be obtained. The usual problem with the Monte-Carlo method is

the practical limit on computational time. If the method ‘s compared to
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the covariance analysis method however, this is not such a severe

problem. The latter genecrally recquires a verv large and complex com-

3 puter program and multiple runs arc often necessarv in any case, to
ensure satisfactorv performance of the program. It should be recalled

also that the covariance analysis is the first step analysis for a

filtering problem. It is therefore recormended that further analysis

of tiie problem should be carried out with the Monte Carle method.

Summarv of Recommendations

a. The addition of realistic measurements for the angles € and @

in the coordinate transformation matrix C% should be investigated.

] b, Measurements of aircraft inertial positicn and velocity should
be investigated and incorporated if performance benefits so dictate.

p ¢. The possibility of system modeling entirely using inertial

coordinates should be investigated.

4. With the present formulation, further work could now be carried }
out using the Monte-Carlo analysis technique. TIf the filter is signi- ?
ficantly redesigned, then the covariance analysis method should again :
be used as the first step analysis. ?
Conclusions g

The work carried out in this study falls into three categories: E

a. Development of the truth modei and filter model state and ?

measurement equations, ;

WORR

b. Description of the Extended Kalman Filter and covariance

analysis method equationms.

(: c. Testing of the filter.
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Part c. represents the majoritv of the work. Where possible,

existing computer programs were u<ed. This was done to save program

development time which essenrially detracts from the real thrust of

-

the study. liowever, in retrospect, it might have been better to develop

nev prograns since the redevelopment of existing prosrams was a verv

T T

time consuming task.
; The most difficult part of the actual testing was the filter
tuning. This basicallyv involved changing various parameters in the

filter model to maximize filter performance. The task is similar to

an optimization problem where several parameters are simultaneously

adjusted for optimum filter performance. Since each computer run

£ 3vgin SR CLE A cUB R

required considerable computational time and storage, the optimization

process was slow and time consuming.

£ As a whole, however, the study was an informative experience. There
is mucih work still to be done in the area of alrcreft to satellite track-
ing, but this study has certainlv indicated some of the areas where pnro-

blems can be expected, and some of the methods throupgh which thev can be

solved.

g
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Appendix A

Derivation of Gravitational Forccs Due to Rarth (Refs. 8, 9, 10, 11)

Fig. 29 below shows the incrtial earth centered coordinate frame

' (I - frarme) and the rotatine earth centered coordinate frame (r - frame).
The two frames align when 6 = 0,
j
i Ir
]
-—d--'- __\_\--\_\-\'-
. -,
F
Jf \

Sk AN S ]
-

1 Vernal - ;

3 Lquinox ' / Equator
. Direction g rf;

-~

: M -

il =

g

e as el

Fig. 25 1Inertial and Rotating Coordinate Frames

Defining the Earth's gravitational potential as U which is a func-~

tion of position X, Y., Z. in the rotating frame i.e. U = U(Xy,Yr,2Z,),

then at any point in space, the three components of gravitational force 3

expressed in the rotating coordinate frame can be defined as Aﬂxr, Ath,

and AgZ such that: ?
T
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Ag - g -
X Xp
A, L 3U
Y, 3Y_
3 U

A =
87, 3z _

If U 1s defined therefore, the gravitational forces in the rotating 4

frame can be calculated. The forces are required however in the iner-

tial ccordinate frame so a coordinate transformation from rotating to

inertial coordinates must be defined. Let C: be the coordinate trans-

formation matrix from rotating to non-rotating (inertial) coordinates,

then: :
[ cos (9) - sin (9) 0 7 3

I 1

Cr = sin (@) cos (8) 0 E

]

.'l

L. 0 0 1 j

!

i

where: |
3
6 = 6 + WE t %
= - ; %

0= Local Greenwich hour angle at t = 0

<t Bt oc® nnb

WE = Earth rotation rate

t = time

and if the force due to gravity in the inertial coordinate system {is

the vector:
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A
-
M
A = A
£ g,
A
- g,
then:
-A o= ..A -
g S Xr
1
A = Cé A
g2 ng
LA LA, ]
g3 ZZr

Gravitational Potential Model U(X,, Ypo, Z2.)

The problem under consideration examines the tracking problem for

a near earth satellite. In order to express the gravitational forces

due to the earth for a low orbit satellite accurately, the following

gravitational potential model was chosen:

6 k
ko2 m (m) (
U = 1+ 3 o P'™ (sino)
A
. K = 2 m= 0 Ck,m cos{m E)
ok l
+ Sk,m sin(wip) (a-1)

where the terms in equation (a-1) are defined as follows:

ke is the gravitational conctant for the earth

m is the mass of the earth

r 1s the radial distance of the body from the earth center
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Pk(m) are Legendre functions, that is the functions;

Pk(m) (X) = (1 - = ‘m/Z i pk(x) }
d x™

and Pk(x) is the Legendre polynomial vith argument x.

Note that in equation (3), the argument of the Legendre

polynomials is sin @.

E 1s the longitude of the satellite with respect to the

Greenwich meridian

# is the geocentric declination angle for the satellite

The ¢, and S are harmonic coefficients for the gravitational
k,m k,m

potential such that:

. () —_
Ck,o = - Jk and Sk,O =

and the Jk(o) coefficients are termed 'zonal harmonic®

Ck,m and Sk,m are termed 'tesseral harmonic' ifm#k, m»>»0

and 'sectorial harmonic' {f m = k

The significance of the terms zonal, tesseral, and sectorial is

illustrated by Fig. 30(Ref. 9)

N
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2,2 3,3 4,4

Fig. 30 Gravity Harmonics

Equation (3) could be extended to include higher harmonics than
6,6. This would largely depend on the type of orbit and the accuracy
required. For the purposes of this study, the harmonics up to and in-
cluding 6,6 are defined to represent the true gravitational field. Thus
any filter model which might use a lower order model will be compared
against this particular truth model, and the inclusion of higher terms

in the truth model would not significantly improve this comparison.

Calculation of the Second Partial Derivatives of U (Ref. 16)

In order to linearize the state equations for use with the Extended

Kalman Filter, it will be necessary to find vhe second partial derivatives

of the gravitational potential U with respect to the satellite inertial

position (Xl.’ X, X3) measured along the X, Y and Z axes respectively

of the inertial frame (see Fig. 1). The analytic calculations of the L

first partials only are long and complex and result in several hundred ;

N

terms. An analytic calculation of the second partials would be complex,
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prone to error and too time consuming computationally. In Ref. 16, {it

was shown that for this type of orbit, a one sided differencing method

Srafun Ty b o2l dapoa s

provided an accurate value for the second partials providing the

) differencing step size 1s kept small. A step size of 1 meter was
chosen since any further reduction did not change the numerical result
3 wvhile at the same time, a calculation using 1 meter did not introduce
. round-off errors. Calculation of these second partials is carried out
in the rotating ccordinate frame to give the matrix of second partial

derivatives:

- 32U 32 v o -
5 Xp? “Xp vy
U = - -
2
r (a-2)
. - 32 y
3 3 Z,2

where the notation indicates the matrix is with respect to the rotating

frane. Defining U2 as the matrix of second partial derivatives taken
I

with respect to the inertial non-rotating earth centered coordirate

frame (I - frame) then:

-~
S gmiec dmokis

S
Uy, C; U G
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Appendix B

Lincarjzation of Truth Model State and lfeasurcrment Fquatlons

. et £ R AL A i ibar A g PO LY PRP DU I T NPT PR SR VP TR AT IR PR D PP TR

Definitions:
X1» ¥y, X, Inertial satellite position vector
Xq, XS, X6 Inertial satellite velocity vector

s Ygr Zg Position vector of sun in earth centered inertial

coordinates

Xne Yoo 2 Position vector of moon in earth centered inertial

coordinates

B Distance from earth center to satellite

Tg Distance from earth center to sun

T Distance from earth center to moon

0 Atmospheric density at altitude h

Py Sea level atmospheric density

B8 Altitude atmospheric density decay rate

Va | Magnitude of satellite velocity relative to
rotating atmosphere

Tyg Distance from satellite to sun

Tyn Distance from satellite to moon
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u(i, )

Hp

System F - Matrix

(25 b SR A s b i ol R R et b3 sk dat i e T o T P T TSRSy BN T WO TS TERmag e - Ty S S

Earth rotation rate

Matrix of second partials of gravity gradient with
respect to satellite position in earth centered

inertial coordinates
Element in 1th row and jth column of U,
Matrix of second partials of gravity gradient with

respect to satellite position in tracker coordinates

= TyT T
(U2T = (Cy) U21 C1
Element in 1th row and jth column of Uz
Sun's gravitational constant

Moon's gravitational constant

Given the non-linear state equation:

x(t) = f.(x(t), £) + G (t) wg(t)
F () = &8
s X xn(t)

where z,(t) is the nominal reference state trajectory.

Using the non-linear state equation defined in the summary to

section II, the matrix Fg(t) is:

kit D st e g e s sk e
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L

r— |
_ — pu— l.—.
F2(6 x 8)
A |
S
0(47 x 14)
L

which is evaluated along x

N8 x 53)
- . -, - _
F3(6 X 6) Fu(6 x 11) i F5(6 x 36)
\ Fe(ll x 11)
0(47 x 36)
0036 x 11) ’
! ! il
n(t). The fipures in brackets indicate the

dirensions of the various sub-matrices.

VTR R RIS PR T TSI NI S

0(2 x 3) ‘ I(3 x 3) P o@ x 2)
!
|
- ~ - - |- - — — - — -
‘ |
|
F,o= £q £q £10 | £ £y 0 £y £i
|
|
£15 16 £y5 fle fig 0 £r0 a1
f }
| 0(2 x 8) B
where:
Y
fl = u(l, 1) + {0.5 >.7 Va 8 o] Xl (‘\u + UE Xz) i
rV
. :0.5 X, WE p (Xg - VWE X,)(%, + WL xz)]
Va

S 7 S

31]@ (XS - Xl)z
5

Tvs
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£,

£y

it

u(l, 2) +

u(l,3) +

~-0.5 X7 p

-0.5p Va (X, +

-4.5 x 1077 %s
r

0.5 ¥7Va £ p Yo (Xy

+ W X2) ]

0.5 X; VE p (X, + WE X,)?

}—]0.5}{70"”“,\/3;

x, = X1) (yg = X2) (31:D(xm - X)) (yy -

0.5 X7 Va B p X3(X,

+ WE :{2)}

X, + VEX,) }

i
(Xs - X))(zg - X 31:D (% - X1) (2 - X3) 5

(X, + WE X,)2
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u {29

u(2, 2)

S | T T RSNy Y F. sy m— T e U ¢ T IIESE— T - B

N 0.5 .' p) 1 { ¢ = 3
1y { X7 Va £ p X1 (Xg WE X1) |

|

Ty

Va

+ {0.5 X, Va ¢ wn} + ’3“c>(ys T X g - X))

5
Tys

+ 3UD (Yym = X2) (% = X1)

rvms

[0-5%; Va B o Xp(Xs - WE X)) ,

l rv

_ (05X WE o(Xs - WE X))(Xa + WE Xp) }

Va

+
|
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10

12

B FTT I INW AT, P AE Te T Te

= u(2, 3) +{°'5X7"a""0x3 (X5 - ‘mxl)}

Ty

{0.5 X7 p W X3 (Xg

Va

- WE X;) }

X3)

+ 31—‘» (}’m - X2)(Zm

l
I

X3)

5
Tym

-(X, + WE Xp;)(X5 - WE X;) 0.5

X700

Va

- 2
= -0.5%,p0 | &5 - WEXNT
Va

= -0.5 pVa (Xg - WEX,)

= -4.5 x 1077 Ys
Ts

0.5 X7 B p X1 Va X3

= u(3, 1) +{

Ly

- {0.5 X7 o WVE X3(X5 - WE X‘) }

Va

+ | dplzs = X3 (xg = X1 | 4 [ 3u) (zm - X2) Gig = X1)

5
rVS
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16

19

20

Bl Ll it Rttt Dt sl s tLasrt Sl P L eui o Siviid coatat b 2 e

0.5 %7 £ p X, Va X
u(3, 2) + [ [ 3}

Ty

‘0.5 X7 p WE X3(Xy + VWE X2)
] Va

3“@ (ZS - X3) (ys - Xz) }
5

Tvs

3uy ( - X3)(ym - X2)
+{_u)>zm 35y:-\ 2}

Tvm

u(3, 3) +

r Va

0.5 X7 8 p Va X32 } _ 0.5 X7 p X32
v

X3)2

3 z -
0.5%, p Va - =& + 70O (zs
rys rvs®

- uyp + 3UD (Zm - X3)2

3
Tym 5

Tvm

-0.5 X7 p(Xy + WE X2) X3

Va

-0.5 X7 p(X5 - WE X1) X3
Va

-0.5 p Va X,
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= - [ -7 Zg
fZl 4.5 x 10 =
r s
g1 8o g1 |
|
] FZ = 0(6 =z 5)
: 0(3 x 3) |
| L _ &
85 8g 84 I
L | -
£
E where:
_ =u (3,1 de u (1, 1)
81 = —_— - ———
R R
: , g = T8 (3,2 _ sed @, 2)
3 - 2 R R
3
g = -6 (3,3 _ fcd(, 3
3 R R
i
3 - (2, énu (1, 1)
: %y R - R
-u (2, 2) én u (1, 2)
g =z — -
g = -u (2, 3)  énu {1, 3)
6 i R
k.
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(1, 1) + énu (2, 1) - é¢

=1

(3, 1)

oQ

~
fl
=

(L, 2) + &nu u (3, 2)

00
@
]
=
7~~~
N
N
S
1
o
[yl
[=4

(3, 3)

=1

u (1, 3) + éna (2, 3) - &
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n

(=4
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It should be noted that each element in each of the above sub-

matrices is evaluated along the nominal reference trajectory x,(t).
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Svstem G - matrix and G5 - matrix

If Q) is the variance of the white noise W; driving the state

eq' 1tion for X, , 0, 1s the variance for W, and Q; 1is the variance for

; Wy, then: _
: Q 0 0 !
1 |
0 0, 0 0(3 x 11)
: 0 0 Q, '
Qs =
]
1 0(11 x 3) I(11 x 11)
[ | —~
and Gg is given by:
0(3 x 3) | —‘
- - o(l4 x 11)
I(3 x 3) |
= = = = =
0(55 x 3) |
- = - - - — I, — -
l \/282 G2
GS &3 | 283 0'3 '.
N
| N A
' N
V2811 o911
I
0(36 11 4
- | (36 = 11) _J |
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E
System Hg - matrix and R, - matrix
E Given the non-lirear measurement equation:
2ot = hgGeley), t) + vg(ep)
[; HS = _a_"_s.
. X xp(t)

wnere xn(t) is the nominal reference state trajectory.

Using the non-linear measurement equations defired in the summary

to section II, and defining the components of 2z (tj) as:

_w =

Hy

Es(ti) = §

A

and assuming the constants Kl, KZ’ and Kp are 21l unitv, then Hs(t) is

given by:

i
He, Hg He

— 2
Hs(®) = 1 s . 16) 5 x 10) 5 x 11)

AR

o
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]
3
; and R, is given by:
:
v
0
) Rsz
: R
i 4 = 33
b l\s
R
Sy
0

Rg
Z 5
E and Rg 1s the variance of V
1 1 2
3
] Rg 1s the variance of V3

2

s. 1s the variance of V5

Rg 1s the variance of V8

Rg_1s the variance of Vg
5

Note also that the above Hy matrix is evaluated along xn(t).
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Lincarization of Filter Model State and Measure¢
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Appendix C

'ment Fquations

Definitions:

u(i, §)

R

u(i, j)

Yo

Filter Model F - matrix

Inertial satellite position vector
Inertial satellite velocitv vector
Distance from earth center to satellite

Matrix of 2nd partials of gravity gradient
with respect to satellite position in earth

centered inertial coordinates

Element in ith row and jth column of U,
I

Matrix of 2nd partials of gravity gradieat

with respect to satellite position in tracker

coordinzates

Element in 1ith row and jtP colum of U,
T

Earth's gravitational constant

Using the non-linear state equations defined in the summary to

section V, the filter model F - matrix denoted F_ is given by:

Fi 0o ]
(€ x 6) (6 x 6)

Fy Fjq
(6 x 6) (6 x 6)
=

SR g LT
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which 1is evaluated along x.(t).

¢imensions of the sub-natrices.

0 I
(3 x 3) (3 x 3)
F E
1 UZI 0
(3 x73) (3 x 31}
where:
'_“E? 3ug X; 2 3u@ Xi1X2 Jug X1X3
Ty rVS rvs rvs
» - , r 2 an >
U } 3“@ ngl ._J;e + 3.1@.5. 3u® Xz)‘ua
2y Ty Y Ty ry”?
31:@ X3Xy 3116 X3Xo -y 313(9 X32
ryd r. 5 o _—-;;5
— v N
- _ —
-u_(3, 1) -u (3, 2) -u (3, 2)
R R R I
) l
a (2, 1) a (2, 2) u (2, 3)
R R R | i
b= m = T - T T K 0 3
(6 x 3)
0(3 x 3) ]
R - T T T 77
u(l, 1) u(l, 2 u(l, 3)
144

The figures in brackets indicate the

SRR I Sl




S

R asdii A Dl

T HVIVRER LG RAASITRE T IR

GAJEE/74-3

T PP T Y

Ty

-

“$ T -

Ao

ﬁ| Slm -

Zee X
ST 1 z
(z 7™+, ") 0 0 g “STn
0 0 0 0
0 0 Xim 0
X
0 Lo~ 0 1
NM»
X 7 N
Iy - “STe 3, 4 0 0
Nm
e
Zay M1, 1, o o Xy
;\.,
i i ek dat g 2 s B Rty TR AR T g e

AR TEITN -

X
¥ ST ¢

XLm

Iz z2-

£

145




AT T TR TIER TR L AT T e R T s AL T R S e T
i 2l o ey R Ehlasii — v A
o fe il e LT M al dind Al o fALin o A ot R et
bd A =¥, a il Ot o 82 o b b s At it A S bl At Dk = il

- 5 Gark s icin e —

s BT RN Gy At e S Sltht e £

GA/LL/T76-3

IF'ilter Model QF and GF Matrices

Let QF be defined as the covariance mr

E atrix £ | w(t) g?(t)}
| :
I; wihere:
: FW;W
)
3
| .
- W
3
w(t) =
E W,
ws
| s ]
? W, to W, are independent Gaussian white noise processes so that
' QF is a diagonal 6 x 6 matrix and:
[ 4 x 107
0
4 x 1075
:
; 4 x 107°
3
Q . =
% £ 1 x 10722
: 1 x 10722 ,
0 9 ;
L 25 x 107" 3
R |
(3 x 3) |
- - - “l 0 .
(6 x 2) ;
I |
Gp = (3 x 3) .
| @x2) ;
0 |
(6 x 3) 0
I G« 2)|
e
.K |
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Filter Model gy and Rp Hatrices
£ Let Rp be the covariance matrix & v(t) VT(t) where:
] v,
V3
E V7
E v(t) 2
| i
Ve
‘ The elements of the vector are independent Gaussian white noise
processes so that RF is a diagonal 5 x 5 matrix and:
=
4 F;-S x 10712
: 0
] 2.5 x 10-12
L . -12
] RF 6 x 10
6 x 10712
0
450
L .
~

where the figures are derived using the truth model data set in Appendix

D. Hp is the 5 x 5 identity matrix.
w
1 ,
L
: 147
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Appendix D

Initial Truth Moldel Simulagipn Parameters

The following simulation parameters are used inftially in the
i

—

truth model measuremert equations,

Rate Gvro Measurements

The figures are based on Ref. 15, page 302 representing a typical

S TR TR AR T T -

aircraft gyro.

Steady State

Process
Quantitz Standard Deviation Correlation Time

E Gyro drift 1 x 107% rad/sec 1 hr

]

i Gyro scale factors 5 x 10”" @

:

] . Gvro mass unbalance 3 x 107% rad-sec/m o

coefficients
E Gyro misalignment 1 x 10" @
?\ coefficients i
Additive white noise 1 x 1072 rad/sec 0 i
¥
L
The gyro drift correlation time is typically much larger then 1 hour. f

The time was reduced to 1 hour to model a worst case drift. The mis-

alignment coefficients have been approximately estimated and the whrite

noise is based on uncertainty in the gvro drift.

Acceleromzter Measurements

The figures are based on Ref. 15, page 291, representing a tvpical ‘

acclerometer.

Vi
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Steady State Process
i Quantity Standard Deviation Corzslation Time
13
1 Accelerometer drift 0.05 m/sec? 1 hr
Accelerometer scale factors 1 x 1073 o
] , _
E Accelerometer ¢” non-linear 1 x 1073 sec?/m o
E coerficients
E 3 : X -4 4, 2
E Accelerometer g non-linear 2 x 107" sec /m ©
E coefficlents
Accelerometer nisalignment 5 x 10" o
cocfficients
Additive white noise 1 x 100 m/sec? 0

where the accelerometer drift process correlation time has been reduced

: to 1 hour to represent worst case drift and the white noise results from

the additive cffects of dead zone, hvsteresis and temperature effects.

Ancular Deviations

The exact means of measuring angular deviations will varv depending
on the tvpe of tracking device emploved. The following figures are

therefore approximnately estimated a&s representative cf a typical device.

Steady State Process
Quantity Standard Deviation Correlztion Time
Angzle track 1 x 10°% rad 10 sec
scintillations
Angle measurement 10~ 300 sec
scale factors
Angle track bias 2 x 107 rad L
Additive white noise 1 x 1075 rad 0
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Ranpe Measurement

Again, the range measurement parameters will varv depending on the

device used. The following fipures arc thercfore approximately esti-

el A e -

mated as representative of a typical device.

X
o

Steady State

Process
Ouantitz SCandar@_peviation

Correlation Time

Range scintillation 20 n 10 sec

Pange bias 5m

: Additive white noise Sm

.
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